Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065273

RESUMEN

Auxetics are materials displaying a negative Poisson's ratio, i.e., getting thicker in one or both transverse axes when subject to strain. In 2018, liquid crystal elastomers (LCEs) displaying auxetic behaviour, achieved via a biaxial reorientation, were first reported. Studies have since focused on determining the physics underpinning the auxetic response, with investigations into structure-property relationships within these systems so far overlooked. Herein, we report the first structure-property relationships in auxetic LCEs, examining the effect of changes to the length of the spacer chain. We demonstrate that for LCEs with between six and four carbons in the spacer, an auxetic response is observed, with the threshold strain required to achieve this response varying from 56% (six carbon spacers) to 81% (four carbon spacers). We also demonstrate that Poisson's ratios as low as -1.3 can be achieved. Further, we report that the LCEs display smectic phases with spacers of seven or more carbons; the resulting internal constraints cause low strains at failure, preventing an auxetic response. We also investigate the dependence of the auxetic threshold on the dynamics of the samples, finding that when accounting for the glass transition temperature of the LCEs, the auxetic thresholds converge around 56%, regardless of spacer length.

2.
Nat Commun ; 15(1): 5845, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992039

RESUMEN

Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter.

3.
Macromolecules ; 57(11): 5218-5229, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882196

RESUMEN

Liquid crystal elastomers (LCEs) are polymeric materials that are proposed for a range of applications. However, to reach their full potential, it is desirable to have as much flexibility as possible in terms of the sample dimensions, while maintaining well-defined alignment. In this work, photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization is applied to the synthesis of LCEs for the first time. An initial LCE layer (∼100 µm thickness) is partially cured before a second layer of the precursor mixture is added. The curing reaction is then resumed and is observed by FTIR to complete within 15 min of irradiation, yielding samples of increased thickness. Monodomain samples that exhibit an auxetic response and are of thickness 250-300 µm are consistently achieved. All samples are characterized thermally, mechanically, and in terms of their order parameters. The LCEs have physical properties comparable to those of analogous LCEs produced via free-radical polymerization.

4.
Macromolecules ; 57(5): 2030-2038, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38495386

RESUMEN

Determining the tunability of the optical coefficients, order parameter, and transition temperatures in optically transparent auxetic liquid crystal elastomers (LCEs) is vital for applications, including impact-resistant glass laminates. Here, we report measurements of the refractive indices, order parameters, and transition temperatures in a family of acrylate-based LCEs in which the mesogenic content varies from ∼50 to ∼85%. Modifications in the precursor mixture allow the order parameter, ⟨P2⟩, of the LCE to be adjusted from 0.46 to 0.73. The extraordinary refractive index changes most significantly with composition, from ∼1.66 to ∼1.69, in moving from a low to high mesogenic content. We demonstrate that all LCE refractive indices decrease with increasing temperature, with temperature coefficients of ∼10-4 K-1, comparable to optical plastics. In these LCEs, the average refractive index and the refractive index anisotropy are tunable via both chemical composition and order parameter control; we report design rules for both.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA