RESUMEN
The present study reports the effect of shortening the prefreezing equilibration time with glycerol on the quality of frozen-thawed ejaculated sperm from four Mediterranean mountain ungulates: Cantabrian chamois (Rupicapra pyrenaica), Iberian ibex (Capra pyrenaica), mouflon (Ovis musimon) and aoudad (Ammotragus lervia). Ejaculated sperm from these species were divided into two aliquots. One was diluted with either a Tris-citric acid-glucose based medium (TCG-glycerol; for chamois and ibex sperm) or a Tris-TES-glucose-based medium (TTG-glycerol; for mouflon and aoudad sperm), and maintained at 5°C for 3h prior to freezing. The other aliquot was diluted with either TCG (chamois and ibex sperm) or TTG (mouflon and aoudad sperm) and maintained at 5°C for 1h before adding glycerol (final concentration 5%). After a 15min equilibration period in the presence of glycerol, the samples were frozen. For the ibex, there was enhanced (P<0.05) sperm viability and acrosome integrity after the 3h as compared with the 15min equilibration time. For the chamois, subjective sperm motility and cell membrane functional integrity were less (P<0.05) following 15min of equilibration. In the mouflon, progressive sperm motility and acrosome integrity was less (P<0.05) when the equilibration time was reduced to 15min. For the aoudad, the majority of sperm variables measured were more desirable after the 3h equilibration time. The freezing-thawing processes reduced the sperm head size in all the species studied; however, the equilibration time further affected the frozen-thawed sperm head variables in a species-dependent fashion. While the equilibration time for chamois sperm might be shortened, this appears not to be the case for all ungulates.
Asunto(s)
Criopreservación/veterinaria , Crioprotectores/farmacología , Glicerol/farmacología , Preservación de Semen/veterinaria , Ovinos/fisiología , Animales , Criopreservación/métodos , Crioprotectores/administración & dosificación , Glicerol/administración & dosificación , Masculino , Preservación de Semen/métodos , Ovinos/clasificación , Especificidad de la Especie , Motilidad Espermática , TemperaturaRESUMEN
Fertilization is a key reproductive event in which sperm and egg fuse to generate a new individual. Proper regulation of certain parameters (such as intracellular pH) is crucial for this process. Carbonic anhydrases (CAs) are among the molecular entities that control intracellular pH dynamics in most cells. Unfortunately, little is known about the function of CAs in mammalian sperm physiology. For this reason, we re-explored the expression of CAI, II, IV and XIII in human and mouse sperm. We also measured the level of CA activity, determined by mass spectrometry, and found that it is similar in non-capacitated and capacitated mouse sperm. Importantly, we found that CAII activity accounts for half of the total CA activity in capacitated mouse sperm. Using the general CA inhibitor ethoxyzolamide, we studied how CAs participate in fundamental sperm physiological processes such as motility and acrosome reaction in both species. We found that capacitated human sperm depend strongly on CA activity to support normal motility, while capacitated mouse sperm do not. Finally, we found that CA inhibition increases the acrosome reaction in capacitated human sperm, but not in capacitated mouse sperm.
Asunto(s)
Acrosoma/enzimología , Anhidrasas Carbónicas/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Animales , Células Cultivadas , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de la EspecieRESUMEN
Celecoxib (Cx), an anti-inflammatory drug designed to inhibit COX2, can affect some ion channels. T-type (CaV3) channels have been implicated in sperm physiology. Here we report and characterize the Cx induced inhibition of T-type channels in mouse spermatogenic cells. Unexpectedly, Cx can also induce the acrosome reaction (AR), an intracellular Ca(2+) ([Ca(2+)]i) increase and a sperm depolarization. This [Ca(2+)]i increase possibly results from the ability Cx has to alkalinize intracellular pH (pHi), which is known to activate the sperm specific Ca(2+) channel CatSper. As the Cx induced [Ca(2+)]i increase is sensitive to mibefradil, a CatSper blocker, this channel may mediate the Cx-induced Ca(2+) entry leading to the AR. Our observations demonstrate that Cx can compromise fertilization.
Asunto(s)
Reacción Acrosómica/efectos de los fármacos , Antiinflamatorios/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Pirazoles/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Celecoxib , Masculino , RatonesRESUMEN
In this work, an optimization method is implemented in an anaerobic digestion model to estimate its kinetic parameters and yield coefficients. This method combines the use of advanced state estimation schemes and powerful nonlinear programming techniques to yield fast and accurate estimates of the aforementioned parameters. In this method, we first implement an asymptotic observer to provide estimates of the non-measured variables (such as biomass concentration) and good guesses for the initial conditions of the parameter estimation algorithm. These results are then used by the successive quadratic programming (SQP) technique to calculate the kinetic parameters and yield coefficients of the anaerobic digestion process. The model, provided with the estimated parameters, is tested with experimental data from a pilot-scale fixed bed reactor treating raw industrial wine distillery wastewater. It is shown that SQP reaches a fast and accurate estimation of the kinetic parameters despite highly noise corrupted experimental data and time varying inputs variables. A statistical analysis is also performed to validate the combined estimation method. Finally, a comparison between the proposed method and the traditional Marquardt technique shows that both yield similar results; however, the calculation time of the traditional technique is considerable higher than that of the proposed method.
Asunto(s)
Bacterias Anaerobias/metabolismo , Reactores Biológicos , Modelos Biológicos , Ácido Acético/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Residuos Industriales , Cinética , Metano/metabolismo , Dinámicas no Lineales , Propionatos/metabolismo , Eliminación de Residuos LíquidosRESUMEN
The sperm acrosome reaction (AR) is a regulated exocytotic process required for gamete fusion. It depends on an increase in [Ca(2+)](i) mediated by Ca(2+) channels. Although calmodulin (CaM) has been reported to regulate several events during the AR, it is not known whether it modulates sperm Ca(2+) channels. In the present study we analyzed the effects of CaM antagonists W7 and trifluoroperazine on voltage-dependent T-type Ca(2+) currents in mouse spermatogenic cells and on the zona pellucida-induced AR in sperm. We found that these CaM antagonists decreased T-currents in a concentration-dependent manner with IC(50) values of approximately 10 and approximately 12 microM, respectively. W7 altered the channels' voltage dependence of activation and slowed both activation and inactivation kinetics. It also induced inactivation at voltages at which T-channels are not activated, suggesting a promotion of inactivation from the closed state. Consistent with this, W7 inhibited the ZP-induced [Ca(2+)](i) transients in capacitated sperm. Likewise, W7 and TFP inhibited the AR with an IC(50) of approximately 10 microM. In contrast, inhibitors of CaM-dependent kinase II and protein kinase A, as well as a CaM-activated phosphatase, had no effect either on T-currents in spermatogenic cells or on the sperm AR. Together these results suggest a functional interaction between CaM and the sperm T-type Ca(2+) channel. They are also consistent with the involvement of T-channels in the AR.
Asunto(s)
Reacción Acrosómica , Canales de Calcio/fisiología , Calcio/metabolismo , Calmodulina/antagonistas & inhibidores , Espermatozoides/citología , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo , Animales , Calcio/antagonistas & inhibidores , Calcio/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Cinética , Masculino , Ratones , Técnicas de Placa-Clamp , Sulfonamidas/farmacología , Factores de Tiempo , Trifluoperazina/farmacologíaRESUMEN
This study provides evidence for a novel mechanism of voltage-gated Ca(2+) channel regulation in mammalian spermatogenic cells by two agents that affect sperm capacitation and the acrosome reaction (AR). Patch-clamp experiments demonstrated that serum albumin induced an increase in Ca(2+) T current density in a concentration-dependent manner, and significant shifts in the voltage dependence of both steady-state activation and inactivation of the channels. These actions were not related to the ability of albumin to remove cholesterol from the membrane. In contrast, beta-estradiol significantly inhibited Ca(2+) channel activity in a concentration-dependent and essentially voltage-independent fashion. In mature sperm this dual regulation may influence capacitation and/or the AR.