Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 345: 126560, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34915113

RESUMEN

Economic biowaste to biofuels production technology suffers from issues including high production cost of cellulase enzyme and its low efficiency. In this study five lignocellulosic biomass based on their high cellulosic contents are employed in 1:1 ratio with mixed fungal consortia to achieve enhance cellulase production via solid state fermentation. Under the optimum condition total 41 IU/gds FP activity was achieved in 120 h at 40 °C and pH 6.0. Further, crude cellulase was evaluated to improve thermal and pH stability under the influence of 2.0 mg/L NiFe2O4 nanoparticles, showed stability at 70 °C and pH 6.0 up to 8 h. Consequently, NiFe2O4 nanoparticles treated cellulase was used for the enzymatic hydrolysis of alkali treated wheat straw, and total 53 g/L reducing sugars could be produced in 18 h at 65 °C and pH 6.0. Thus, nanoparticles mediated enzymatic hydrolysis exhibited âˆ¼ 29% and âˆ¼ 28% higher sugar yield and productivity as compared to control after 18 h.


Asunto(s)
Celulasa , Nanopartículas , Biomasa , Celulasa/metabolismo , Fermentación , Hidrólisis , Lignina , Triticum/metabolismo
2.
Bioresour Technol ; 342: 126006, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34583111

RESUMEN

In biomass to biofuels production technology enzyme plays a key role. Nevertheless, the high production cost of cellulase enzyme is one of the critical issues in the economical production of biofuels. Nowadays, implementation of nanomaterials as catalyst is emerging as an innovative approach for the production of sustainable energy. In this context, synthesis of nickel cobaltite nanoparticles (NiCo2O4 NPs) via in vitro route has been conducted using fungus Emericella variecolor NS3 meanwhile; its impact has been evaluated on improved thermal and pH stability of crude cellulase enzyme obtained from Emericella variecolor NS3. Additionally, bioconversion of alkali treated rice straw using NiCo2O4 NPs stabilized cellulase produced sugar hydrolyzate which is further used for H2 production via hybrid fermentation. Total 51.7 g/L sugar hydrolyzate produced 2978 mL/L cumulative H2 production after 336 h along with maximum rate 34.12 mL/L/h in 24 h using Bacillus subtilis PF_1 and Rhodobacter sp. employed for dark and photo-fermentation, respectively.


Asunto(s)
Celulasa , Nanopartículas , Fermentación , Minerales , Níquel
3.
Bioresour Technol ; 342: 126034, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34592453

RESUMEN

The present study reports Fe3O4 nanoparticles (Fe3O4 NPs) induced enhanced hydrogen production via co-fermentation of glucose and residual algal biomass (cyanobacteria Lyngbya limnetica). A significant enhancement of dark fermentative H2 production has been noticed under the influence of co-fermentation of glucose and residual algal biomass using Fe3O4 NPs as catalyst. Further, using the optimized ratio of glucose to residual algal biomass (10:4), ∼ 37.14 % higher cumulative H2 has been recorded in presence of 7.5 mg/L Fe3O4 NPs as compared to control at 37 °C. In addition, under the optimum conditions [glucose to residual algal biomass ratio (10:4)] presence of 7.5 mg/L Fe3O4 NPs produces âˆ¼ 937 mL/L cumulative H2 in 168 h at pH 7.5 and at temperature 40 °C. Clostridum butyrium, employed for the dark fermentation yielded âˆ¼ 7.7 g/L dry biomass in 168 h whereas acetate (9.0 g/L) and butyrate (6.2 g/L) have been recorded as the dominating metabolites.


Asunto(s)
Glucosa , Nanopartículas , Biomasa , Fermentación , Hidrógeno
4.
Bioresour Technol ; 342: 126015, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34592619

RESUMEN

High production cost of cellulase enzyme is one of the main constraints in the practical implementation of biofuels at global scale. Therefore, the present investigation is focused to produce low-cost cellulase via sustainable strategies. This work evaluates to achieve enhanced fungal cellulase production using natural and pretreated sugar cane bagasse (SCB) via Rhizopus oryzae NS5 under the solid state fermentation (SSF) while implementing graphene oxide (GO) as a catalyst. A low alkali treatment showed better performance for cellulase production wherein 14 IU/gds FP activity is observed in 96 h using 0.5% alkali treated SCB, significantly higher as compared to 10 IU/gds FP in case of untreated SCB. Further, the effect of GO has been investigated on cellulase production, incubation temperature and pH of the production medium. Under the influence of 1.5% concentration of GO, alkali pretreated SCB produced maximum 25 IU/gds cellulase in 72 h at pH 5.0 and 40 °C.


Asunto(s)
Celulasa , Saccharum , Álcalis , Celulasa/metabolismo , Celulosa/metabolismo , Fermentación , Grafito , Hidrólisis , Saccharum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA