Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 11(16)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010634

RESUMEN

Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a "molecular scissor" to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.


Asunto(s)
Dinaminas , Endocitosis , Dinaminas/metabolismo , Endocitosis/fisiología , Vesículas Transportadoras/metabolismo
2.
J Biochem Mol Toxicol ; 36(6): e23032, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35243728

RESUMEN

Recent studies have emphasized the role of mitochondria in renal function as well as in renal injury. Poor mitochondrial quality control mechanisms including mitochondrial fusion, fission and mitophagy are major contributors for progression of diabetic renal injury. The current study is aimed to evaluate the protective role of myo-inositol (MI) against diabetic nephropathy (DN) by utilizing high glucose exposed NRK 52E cell and streptozotocin (STZ) induced DN model. MI supplementation (at doses 37.5 and 75 mg/kg) ameliorated albuminuria and enhanced the renal function as indicated significant improvement in urinary creatinine and urea levels. On the other hand, the western blot analysis of both in vitro and in vivo studies has revealed poor mitophagy in renal cells which was reversed upon myo-inositol treatment. Apart from targeting the canonical PINK1/Parkin pathway, we also focused on the role mitophagy receptors prohibitin (PHB) and NIP3-like protein (NIX). A significant reduction in expression of NIX and PHB2 was observed in renal tissue of diabetic control rats and high glucose exposed NRK 52E cells. Myo-inositol treatment resulted in positive modulation of PINK1/Parkin pathway as well as PHB2 and NIX. Myo-inositol also enhanced the mitochondrial biogenesis in renal tissue of diabetic rat by upregulating Nrf2/SIRT1/PGC-1α axis. The current study thus underlines the renoprotective effect myo-inositol, upregulation of mitophagy proteins and mitochondrial biogenesis upon myo-inositol treatment.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Glucosa/farmacología , Inositol/farmacología , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-35146419

RESUMEN

Neuronal dysfunction and subsequent apoptosis under high glucose conditions during diabetes contribute majorly to the manifestation of diabetic peripheral neuropathy (DPN). PERK (protein kinase RNA (PKR)-like ER kinase) one among the three canonical arms of unfolded protein response (UPR), is believed to play a crucial role in determining the cell fate during endoplasmic reticulum stress (ERS/ER stress) conditions. We evaluated the role of PERK inhibitor GSK2606414 in high glucose (30 â€‹mM) treated neuroblastoma (N2A) cells. High glucose resulted in disruption of ER proteostasis by activation of UPR which is evident through increased (p â€‹< â€‹0.001) expression of GRP78, p-PERK, p-eIF2α, ATF-4 and CHOP when compared to normal cells. It is accompanied with enhanced GRP78 localization in Endoplasmic Reticulum (ER) lumen evident from ER labeling Immunofluorescence (IF) staining. PERK activation resulted in altered mitochondrial function evident by increased mitochondrial superoxide production and compromised mitochondrial homeostasis with decrease in Mfn-2 levels. Additionally, ER stress induced neuronal apoptosis was attenuated by GSK2606414 treatment via inhibiting the PERK-eIF2α-ATF4-CHOP axis that not only curtailed the levels of apoptotic proteins like Bax and caspase 3 but also elevated the levels of anti-apoptotic Bcl-2. Collectively, our findings revealed the neuroprotective potential of GSK2606414 against high glucose induced neurotoxicity in N2A cells.

4.
Arch Physiol Biochem ; : 1-14, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35015592

RESUMEN

OBJECTIVES: We aimed to evaluate the neuroprotective effect of Indole-3-propionic acid (IPA) against streptozotocin (STZ) induced diabetic peripheral neuropathy (DPN) in rats and in high glucose (HG) induced neurotoxicity in neuro2a (N2A) cells. METHODS: Diabetes was induced in male SD rats STZ (55 mg/kg, i.p.) and IPA (10 and 20 mg/kg, p.o.) was administered for two weeks, starting from sixth week after diabetes induction. Neurobehavioral, functional assessments were made, and various molecular studies were performed to evaluate the effect of IPA on HG induced ER stress and mitochondrial dysfunction in sciatic nerves, DRGs and in N2A cells. RESULTS: Diabetic rats and high glucose exposed N2A cells showed marked increase in oxidative damage accompanied by ER stress and mitochondrial dysfunction along with increased apoptotic markers. IPA treatment for two weeks markedly alleviated these changes and attenuated pain behaviour. CONCLUSION: IPA exhibited neuroprotective activity against hyperglycaemic insults.

5.
Nutr Neurosci ; 25(8): 1731-1746, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33641628

RESUMEN

Objectives: We aimed to evaluate the effect of carvacrol (CRC), a phenolic monoterpene with high nutritional value on NLRP3 activation against chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain (NP) in rats and in lipopolysacharide (LPS) induced neuroinflammation in neuro2a (N2A) cells. Methods: NP was induced in male SD rats by performing CCI and CRC (30 and 60 mg/kg, p.o) was administered for 14 days. Behavioural and functional parameters were evaluated using standard procedures. Various molecular experimentations were conducted to evaluate the efficacy of CRC against CCI induced neuropathy and in LPS (1 µg/ml) primed and ATP (5 µM) treated N2A cells.Results: CCI resulted in marked development of hyperalgesia and allodynia. Further, CCI rats, LPS and ATP treated N2A cells showed enhanced expression of NLRP3, ASC, Caspase-1 and IL-1ß. In addition, CCI rats exhibited diminished levels of Nrf-2 with an increase in Keap1 expression. Also, CCI animals manifested with compromised mitochondrial function along with decreased autophagy markers and enhanced p62 levels when compared to sham rats. However, CRC administration significantly ameliorated these changes suggesting NLRP3 inhibition by CRC may be attributed to activation of autophagy via Keap1/Nrf-2/p62 forward feedback loop and augmentation of mitochondrial quality control. Intriguingly, pretreatment of CRC (50 and 100 µM) to LPS and ATP treated N2A cells resulted in decreased colocalization of NLRP3 and ASC.Discussion: These findings revealed the neuroprotective potential of CRC against CCI induced NP and delineate the critical role of autophagy and mitochondrial quality control in NLRP3 regulation.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Neuralgia , Animales , Masculino , Ratas , Adenosina Trifosfato , Autofagia , Cimenos , Hiperalgesia , Inflamasomas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lipopolisacáridos , Mitocondrias/metabolismo , Neuralgia/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley
6.
Mol Biol Rep ; 48(3): 2833-2841, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33768369

RESUMEN

Poly (ADP-ribose) polymerases (PARPs) constitute a family of enzymes associated with divergent cellular processes that are not limited to DNA repair, chromatin organization, genome integrity, and apoptosis but also found to play a crucial role in inflammation. PARPs mediate poly (ADP-ribosylation) of DNA binding proteins that is often responsible for chromatin remodeling thereby ensure effective repairing of DNA stand breaks although during the conditions of severe genotoxic stress PARPs direct the cell fate towards apoptotic events. Recent discoveries have pushed PARPs into the spotlight as targets for treating cancer, metabolic, inflammatory and neurological disorders. Of note, PARP-1 is the most abundant isoform of PARPs (18 member super family) which executes more than 90% of PARPs functions. Since oxidative/nitrosative stress actuated PARP-1 is linked to vigorous DNA damage and wide spread provocative inflammatory response that underlie the aetiopathogenesis of different neurological disorders, possibility of developing PARP-1 inhibitors as plausible neurotherapeutic agents attracts considerable research interest. This review outlines the recent advances in PARP-1 biology and examines the capability of PARP-1 inhibitors as treatment modalities in intense and interminable diseases of neuronal origin.


Asunto(s)
Enfermedades del Sistema Nervioso/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Activación Enzimática , Humanos , Inflamación/patología , Modelos Biológicos
7.
Free Radic Res ; 55(9-10): 1005-1017, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34991423

RESUMEN

Neuropathic pain is a maladaptive pain phenotype that results from injury or damage to the somatosensory nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis. Oxidative/nitrosative stress is a critical link between neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of peroxynitrite decomposition catalyst; FeTMPyP in chronic constriction injury (CCI) of sciatic nerve-induced neuropathy in rats. CCI of the sciatic nerve manifested significant deficits in behavioral, biochemical, functional parameters and was markedly reversed by administration of FeTMPyP. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers such as iNOS, NF-kB, TNF-α and IL-6 were elevated in sciatic nerves of CCI rats along with depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR) in both sciatic nerves in ipsilateral (L4-L5) dorsal root ganglions (DRG's), suggesting over activation of PARP. Additionally, CCI resulted in aberrations in mitochondrial function as evident by decreased Mn-SOD levels and respiratory complex activities with increased mitochondrial fission protein DRP-1. These changes were reversed by treatment with FeTMPyP (1 & 3 mg/kg, p.o.). Findings of this study suggest that FeTMPyP, by virtue of its antioxidant properties, reduced both PARP over-activation and subsequent neuroinflammation resulted in protection against CCI-induced functional, behavioral and biochemical deficits.


Asunto(s)
Neuralgia , Ácido Peroxinitroso , Animales , Constricción , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estrés Oxidativo , Ácido Peroxinitroso/farmacología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo
8.
Mol Neurobiol ; 57(8): 3616-3631, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32556916

RESUMEN

Bardoxolone methyl (Bard), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator regulates multiple oxidative and inflammatory diseases. However, the role of Bard in painful diabetic neuropathy (DN) remains unknown. Bard administration at two dose levels (15 & 30 mg/kg/day) to STZ (55 mg/kg, i.p) induced diabetic rats for last two weeks of eight week study significantly improved motor nerve conduction velocity (61.84 ± 1.9 vs. 38.57 ± 1.08 m/s), sensory nerve conduction velocity (66.86 ± 5.1 vs. 39.43 ± 3.3 m/s), nerve blood flow (86.28 ± 6.4 vs. 56.56 ± 1.62 PU), and intraepidermal nerve fiber density. Additionally, Bard treatment attenuated thermal and mechanical hyperalgesia in diabetic rats. Further molecular investigation on dorsal root ganglions (DRG) tissue isolated from L4-L6 regions of diabetic rats and High glucose (HG) exposed PC12 cells displayed decreased expression and transcriptional activity of Nrf2 which might have resulted in depleted antioxidant enzymes and mitochondrial chaperones. Bard treatment significantly reversed these effects in diabetic rats and also in HG exposed PC12 cells. Moreover, mitochondrial complex activities were diminished in DRG mitochondrial fractions of diabetic rats and mitochondrial isolates of HG exposed PC12 cells and Bard treatment significantly reversed these effects. Furthermore, Bard treatment significantly impeded the impact of hyperglycemic insults on mitochondrial membrane potential, ROS production and mitochondrial oxygen consumption rate (OCR) (Basal respiration, Maximal respiration, ATP production and spare respiratory capacity) in PC12 cells. Collectively our data suggests that Bard treatment to STZ induced diabetic rats robustly reduces DN which may be due to its effect on Keap1-Nrf2-ARE pathway and have contributed to improvement in mitochondrial function.


Asunto(s)
Antioxidantes/farmacología , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Mitocondrias/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Mitocondrias/metabolismo , Ácido Oleanólico/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA