Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt B): 1158-1168, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39288711

RESUMEN

The emergence of antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) has become a global health challenge due to the overuse of antibiotics. Natural substances including enzymes and essential oils have shown great potential as alternative treatment options. However, the combinational use of these natural agents remains challenging due to the denaturation of enzymes upon direct contact with oil. In this study, we report the design of a Pickering emulsion containing two natural antibacterial agents, lysozyme and tea tree oil, stabilized by fractal silica nanoparticles. In this design, the enzyme activity is kept and the volatility problem of tea tree oil is mitigated. Due to synergistic bacterial cell wall digestion and membrane disruption functions, potent bactericidal efficacy in vitro against drug-resistant bacteria is achieved. The therapeutic potential is further demonstrated in a wound healing model with drug-resistant bacteria infection, better than a synthetic antibiotic, Ampicillin. This study opens new avenues for the development of natural product-based antimicrobial treatments with promising application potential.

2.
Chemosphere ; 352: 141427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368964

RESUMEN

Silica scaling on membranes represents one of the most important issues in industrial water systems because of its complex composition and difficulty in removal. However, there is a lack of understanding of the mechanisms for cleaning silica scales from reverse osmosis (RO) membranes. To address this research gap, this study investigated the scaling and cleaning behavior of silica on RO membrane processes, with a specific focus on the silica scale cleaning mechanism using gallic acid (GA). The membrane flux continuously decreased with operation time, even at the lowest initial silicic acid concentration, owing to silica scale blockage. The GA solution exhibited a strong efficacy in cleaning silica-scaling RO membranes. The membrane flux returned to 89.7% of the initial value by removing 81.87% of the silica scale within the first 30 min of the study period. The cleaning mechanism of GA involved its adsorption onto the surface of silica scale particles to form a surface complex and subsequently transition into a water-soluble 1:3 complex within the solution. This complex interaction facilitated the gradual decomposition of the silica scales that adhered to the membrane surface. This study has valuable implications for the development of efficient and effective silica scale cleaning solutions, providing insights into the complex interplay between GA and silica scaling mechanisms.


Asunto(s)
Dióxido de Silicio , Purificación del Agua , Ósmosis , Membranas Artificiales , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA