Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Rep (Amst) ; 39: e00810, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37559690

RESUMEN

Snake venoms possess a range of pharmacological and toxicological activities. Here we evaluated the antibacterial and anti-biofilm activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) of venoms from the Samar spitting cobra Naja samarensis and the Puff adder Bitis arietans. Both venoms prevented biofilm production by pathogenic S. aureus in a growth-independent manner, with the B. arietans venom being most potent. Fractionation showed the active molecule to be heat-labile and >10 kDa in size. Proteomic profiles of N. samarensis venom revealed neurotoxins and cytotoxins, as well as an abundance of serine proteases and three-finger toxins, while serine proteases, metalloproteinases and C-lectin types were abundant in B. arietans venom. These enzymes may have evolved to prevent bacteria colonising the snake venom gland. From a biomedical biotechnology perspective, they have valuable potential for anti-virulence therapy to fight antibiotic resistant microbes.

2.
Curr Pharm Des ; 26(30): 3700-3710, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32129163

RESUMEN

The mechanisms responsible for cardiovascular and neurodegenerative diseases have been the focus of experimental and clinical studies for decades. The relationship between the gut microbiota and the organs and system tissues represents the research field that has generated the highest number of publications. Homeostasis of the gut microbiota is important to the host because it promotes maturation of the autoimmune system, harmonic integrative functions of the brain, and the normal function of organs related to cardiovascular and metabolic systems. On the other hand, when a gut microbiota dysbiosis occurs, the target organs become vulnerable to the onset or aggravation of complex chronic conditions, such as cardiovascular (e.g., arterial hypertension) and neurodegenerative (e.g., dementia) diseases. In the present brief review, we discuss the main mechanisms involved in those disturbances and the promising beneficial effects that have been revealed using functional food (nutraceuticals), such as the traditional probiotic Kefir. Here, we highlight the current scientific advances, concerns, and limitations about the use of this nutraceutical. The focus of our discussion is the endothelial dysfunction that accompanies hypertension and the neurovascular dysfunction that characterizes ageing-related dementia in patients suffering from Alzheimer's disease.


Asunto(s)
Microbioma Gastrointestinal , Kéfir , Enfermedades Neurodegenerativas , Probióticos , Disbiosis , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico
3.
J Proteomics ; 218: 103707, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32087377

RESUMEN

The asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families. Among the most represented toxins were snake venom metalloproteases (23%), phospholipases A2 (15%), serine proteases (13%), snake venom metalloprotease inhibitors (13%) and C-type lectins (12%). LC-MS of venoms revealed similar profiles regardless of the method of extraction (milking vs defensive bite). Proteomic analysis validated 57 venom-annotated transcriptomic sequences (>70%), including one for each of the 16 families, but also identified 7 sequences not initially annotated as venom proteins, including a serine protease, a disintegrin, a glutaminyl-peptide cyclotransferase, a proactivator polypeptide-like and 3 aminopeptidases. Interestingly, phospholipases A2 were the dominant proteins in the venom, among which included an ammodytoxin B-like sequence, which may explain the reported neurotoxicity following some asp viper envenomations. In total, 87 sequences were retrieved from the Vipera aspis aspis transcriptome and proteome, constituting a valuable resource that will help in understanding the toxinological basis of clinical signs of envenoming and for the mining of useful pharmacological compounds. BIOLOGICAL SIGNIFICANCE: The asp viper (Vipera aspis aspis) causes several hundred envenomations annually in France, including unusual cases with neurological signs, resulting in one death per year on average. Here, we performed a proteotranscriptomic analysis of V. a. aspis venom in order to provide a better understanding of its venom composition. We found that, as in other Vipera species, phospholipase A2 dominates in the venom, and the presence of a sequence related to ammodytoxin B may explain the reported neurotoxicity following some asp viper envenomations. Thus, this study will help in informing the toxinological basis of clinical signs of envenoming.


Asunto(s)
Proteómica , Viperidae , Animales , Francia , Humanos , Metaloproteasas/genética , Fosfolipasas A2 , Venenos de Víboras
4.
J Nutr Biochem ; 75: 108254, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707283

RESUMEN

The effects of bisphenol A (BPA) contamination on the cardiovascular function still are not clear. Here, we evaluated the vascular effects of BPA and the protective actions of kefir in infant rats. Animals (25 days old) were treated with BPA (100 µg/Kg/day) for 60 days (BPA group), or administered kefir (0.3 mL/100 g) in addition to BPA (BPA kefir group), compared with non-treated rats (Control group).The vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine and specific blockers. The balance between reactive oxygen species (ROS) and nitric oxide (NO) was assessed through flow cytometry in the vascular tissue. The BPA group developed high blood pressure (+10%) and the analysis of vascular reactivity showed an impaired ACh-induced relaxation (~80%). The further analysis by using NADPH, NOS and COX blockers revealed that the impaired vasorelaxation was due to increased ROS production (+12%), NO bioavailability (-12%) and increased vasoconstriction to prostanoids (+36%) compared with the Control group. Kefir treatment reverted those effects significantly. Analysis of the aortic cells showed increased •O2- production (1942±39 a.u.) and decreased NO bioavailability (1250±30 a.u.) compared with the Control group (1374±146 and 2777±25 a.u., P<.05) and kefir reverted these values (1298±57 and 2517±57 a.u.). Contamination by BPA in this model caused hypertension and endothelial dysfunction and it was accompanied by a vascular ROS/NO imbalance, damage of endothelial layer and pro-apoptotic effects. The novelty is that the treatment using probiotic kefir was able to attenuate the progression the above BPA effects.


Asunto(s)
Aorta/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Hemodinámica , Kéfir , Fenoles/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Peso Corporal , Sistema Cardiovascular/efectos de los fármacos , Supervivencia Celular , ADN/metabolismo , Endotelio Vascular/metabolismo , Citometría de Flujo , Masculino , Microscopía Electrónica de Rastreo , Estrés Oxidativo , Ratas , Ratas Wistar
5.
Toxins (Basel) ; 10(12)2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487389

RESUMEN

Snake venom serine proteases (SVSPs) are enzymes that are capable of interfering in various parts of the blood coagulation cascade, which makes them interesting candidates for the development of new therapeutic drugs. Herein, we isolated and characterized Moojase, a potent coagulant enzyme from Bothrops moojeni snake venom. The toxin was isolated from the crude venom using a two-step chromatographic procedure. Moojase is a glycoprotein with N-linked glycans, molecular mass of 30.3 kDa and acidic character (pI 5.80⁻6.88). Sequencing of Moojase indicated that it is an isoform of Batroxobin. Moojase was able to clot platelet-poor plasma and fibrinogen solutions in a dose-dependent manner, indicating thrombin-like properties. Moojase also rapidly induced the proteolysis of the Aα chains of human fibrinogen, followed by the degradation of the Bß chains after extended periods of incubation, and these effects were inhibited by PMSF, SDS and DTT, but not by benzamidine or EDTA. RP-HPLC analysis of its fibrinogenolysis confirmed the main generation of fibrinopeptide A. Moojase also induced the fibrinolysis of fibrin clots formed in vitro, and the aggregation of washed platelets, as well as significant amidolytic activity on substrates for thrombin, plasma kallikrein, factor Xia, and factor XIIa. Furthermore, thermofluor analyses and the esterase activity of Moojase demonstrated its very high stability at different pH buffers and temperatures. Thus, studies such as this for Moojase should increase knowledge on SVSPs, allowing their bioprospection as valuable prototypes in the development of new drugs, or as biotechnological tools.


Asunto(s)
Proteínas de Reptiles , Serina Proteasas , Venenos de Serpiente/enzimología , Adulto , Animales , Coagulación Sanguínea/efectos de los fármacos , Bothrops , Estabilidad de Enzimas , Femenino , Fibrinógeno/metabolismo , Humanos , Masculino , Agregación Plaquetaria/efectos de los fármacos , Proteínas de Reptiles/química , Proteínas de Reptiles/aislamiento & purificación , Proteínas de Reptiles/farmacología , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Serina Proteasas/farmacología , Adulto Joven
6.
Artículo en Inglés | MEDLINE | ID: mdl-26500679

RESUMEN

Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases from Mesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-26273285

RESUMEN

Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.

8.
J. venom. anim. toxins incl. trop. dis ; 21: 1-14, 31/03/2015. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484612

RESUMEN

Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.


Asunto(s)
Animales , Animales Ponzoñosos , Garrapatas , Saliva , Venenos de Araña , Venenos de Escorpión
9.
J. venom. anim. toxins incl. trop. dis ; 21: 1-12, 31/03/2015. ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484615

RESUMEN

Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.


Asunto(s)
Animales , Animales Ponzoñosos , Hialuronoglucosaminidasa , Venenos de Artrópodos/análisis , Venenos de Artrópodos/uso terapéutico
10.
J. venom. anim. toxins incl. trop. dis ; 21: 43, 31/03/2015. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954759

RESUMEN

Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.(AU)


Asunto(s)
Animales , Venenos de Artrópodos , Cicatrización de Heridas , Biotecnología , Preparaciones Farmacéuticas , Ácido Hialurónico
11.
J. venom. anim. toxins incl. trop. dis ; 21: 24, 31/03/2015. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954731

RESUMEN

Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.(AU)


Asunto(s)
Venenos de Escorpión , Escorpiones , Venenos de Araña , Arañas , Garrapatas , Productos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA