Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37688072

RESUMEN

Security and privacy are among the main challenges in the systems of systems. The distributed ledger technology and self-sovereign identity pave the way to empower systems and users' security and privacy. By utilizing both technologies, this paper proposes a distributed and self-sovereign-based framework for systems of systems to increase the security of such a system and maintain users' privacy. We conducted an extensive security analysis of the proposed framework using a threat model based on the STRIDE framework, highlighting the mitigation provided by the proposed framework compared to the traditional SoS security. The analysis shows the feasibility of the proposed framework, affirming its capability to establish a secure and privacy-preserving identity management system for systems of systems.

2.
Sensors (Basel) ; 22(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146070

RESUMEN

Computer-aided diagnosis (CAD) systems can be used to process breast ultrasound (BUS) images with the goal of enhancing the capability of diagnosing breast cancer. Many CAD systems operate by analyzing the region-of-interest (ROI) that contains the tumor in the BUS image using conventional texture-based classification models and deep learning-based classification models. Hence, the development of these systems requires automatic methods to localize the ROI that contains the tumor in the BUS image. Deep learning object-detection models can be used to localize the ROI that contains the tumor, but the ROI generated by one model might be better than the ROIs generated by other models. In this study, a new method, called the edge-based selection method, is proposed to analyze the ROIs generated by different deep learning object-detection models with the goal of selecting the ROI that improves the localization of the tumor region. The proposed method employs edge maps computed for BUS images using the recently introduced Dense Extreme Inception Network (DexiNed) deep learning edge-detection model. To the best of our knowledge, our study is the first study that has employed a deep learning edge-detection model to detect the tumor edges in BUS images. The proposed edge-based selection method is applied to analyze the ROIs generated by four deep learning object-detection models. The performance of the proposed edge-based selection method and the four deep learning object-detection models is evaluated using two BUS image datasets. The first dataset, which is used to perform cross-validation evaluation analysis, is a private dataset that includes 380 BUS images. The second dataset, which is used to perform generalization evaluation analysis, is a public dataset that includes 630 BUS images. For both the cross-validation evaluation analysis and the generalization evaluation analysis, the proposed method obtained the overall ROI detection rate, mean precision, mean recall, and mean F1-score values of 98%, 0.91, 0.90, and 0.90, respectively. Moreover, the results show that the proposed edge-based selection method outperformed the four deep learning object-detection models as well as three baseline-combining methods that can be used to combine the ROIs generated by the four deep learning object-detection models. These findings suggest the potential of employing our proposed method to analyze the ROIs generated using different deep learning object-detection models to select the ROI that improves the localization of the tumor region.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Diagnóstico por Computador , Femenino , Humanos , Ultrasonografía Mamaria/métodos
3.
PeerJ Comput Sci ; 7: e498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977136

RESUMEN

Several higher education institutions have harnessed e-learning tools to empower the application of different learning models that enrich the educational process. Nevertheless, the reliance on commercial or open-source platforms, in some cases, to deliver e-learning could impact system acceptability, usability, and capability. Therefore, this study suggests design methods to develop effective learning management capabilities such as attendance, coordination, course folder, course section homepage, learning materials, syllabus, emails, and student tracking within a university portal named MyGJU. In particular, mechanisms to facilitate system setup, data integrity, information security, e-learning data reuse, version control automation, and multi-user collaboration have been applied to enable the e-learning modules in MyGJU to overcome some of the drawbacks of their counterparts in Moodle. Such system improvements are required to motivate both educators and students to engage in online learning. Besides, features comparisons between MyGJU with Moodle and in-house systems have been conducted for reference. Also, the system deployment outcomes and user survey results confirm the wide acceptance among instructors and students to use MyGJU as a first point of contact, as opposed to Moodle, for basic e-learning tasks. Further, the results illustrate that the in-house e-learning modules in MyGJU are engaging, easy to use, useful, and interactive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA