Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Genom Data ; 25(1): 81, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227788

RESUMEN

OBJECTIVES: The two oyster species studied hold considerable economic importance for artisanal harvest (Crassostrea rhizophorae) and aquaculture (Crassostrea gasar). Their draft genomes will play an important role in the application of genomic methods such as RNAseq, population-based genomic scans aiming at addressing expression responses to pollution stress, adaptation to salinity and temperature variation, and will also permit investigating the genetic bases and enable marker-assisted selection of economically important traits like shell and mantle coloration and resistance to temperature and disease. DATA DESCRIPTION: The draft assembly size of Crassostrea gasar is 506 Mbp, and of Crassostrea rhizophorae is 584 Mbp with scaffolds N50 of 11,3 Mbp and 4,9 Mbp, respectively. The general masked bases by RepeatMasker in both genomes were highly similar using different datasets. The masked bases varied from 9.41% in C. gasar to 10.05% in C. rhizophorae and 42.85% in C. gasar to 44.44% in C. rhizophorae using Dfam and RepeatModeler datasets, respectively. Functional annotation with eggNog resulted in 34,693 annotated proteins in C. rhizophorae and 26,328 in C. gasar. BUSCO analysis shows that almost 99% of genes (5,295) are complete in relation to the mollusk orthologous genes dataset (mollusca_odb10).


Asunto(s)
Crassostrea , Genoma , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Animales , Genoma/genética , Acuicultura/métodos , Anotación de Secuencia Molecular , Genómica/métodos , Océano Atlántico
2.
Vector Borne Zoonotic Dis ; 24(9): 625-631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38829161

RESUMEN

Introduction: COVID-19 is an infectious disease caused by SARS-CoV-2 that has become a serious threat to public health owing to its rapid spread from aerosols from infected people. Despite being considered a strictly human disease, there are reports in the literature about animals with confirmed presence of the virus. Aim: Owing to the scarcity of scientific literature on the potential for infection of animals and their importance for One Health, the objective of this work was to research SARS-CoV-2 RNA in felines (Felis silvestris catus) and dogs (Canis lupus familiaris) domiciled. Materials and Methods: Oropharyngeal swabs were collected from domestic dogs and cats belonging to patients diagnosed with COVID-19 from August to October 2021 and residents of the northwest and west regions of Paraná, Brazil. Results: Of the 34 samples collected, 14 were from dogs and 20 from cats. Three of these samples tested positive in real-time PCR, and two of them were also positive in the immunochromatographic test. After testing positive in real-time PCR, the samples underwent genetic sequencing using the Illumina COVIDSeq test. Of the 34 samples collected, three (9%), all of them female and from the feline species, tested positive in real-time PCR, with two of these (67%) also testing positive in the immunochromatographic test. Regarding sequencing, it was possible to sequence the three samples aligned with the AY.101 lineage, corresponding to the Delta variant. Conclusion: The occurrence of SARS-CoV-2 infection in dogs and cats is seen as an unintended event with significant implications for public health, including its potential transmission to other animal species. Further research is required to enhance our understanding of how this disease spreads among these animals and its broader impact on One Health initiatives.


Asunto(s)
COVID-19 , Gatos , Perros , Mascotas , SARS-CoV-2 , Animales , Gatos/virología , Perros/virología , Brasil , COVID-19/diagnóstico , COVID-19/transmisión , COVID-19/virología , Paraguay , Mascotas/virología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Femenino
3.
Sci Rep ; 14(1): 8982, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637586

RESUMEN

Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, with antibody values greater than 0.6 percentile of the range in the same period (median 9525 [185-80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our understanding of the immune response sustenance. Our analysis revealed a differential expression of genes with immunological functions in individuals with low antibody titers, compared to those with higher antibody titers, underscoring the fundamental importance of the innate immune response for boosting immunity. Our findings also provide new insights into the determinants of the immune response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine immunogenicity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Vacuna BNT162 , Vacunas de ARNm , COVID-19/prevención & control , Anticuerpos , Inmunidad Innata , Anticuerpos Antivirales
4.
Braz J Microbiol ; 53(3): 1249-1262, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35446010

RESUMEN

Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000-2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and ß-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum ß-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6')-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as ß-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.


Asunto(s)
Farmacorresistencia Bacteriana , Infecciones por Salmonella , Salmonella enterica , Antibacterianos/farmacología , Brasil , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antecedentes Genéticos , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Salmonella/microbiología , Salmonella enterica/genética
5.
Front Microbiol ; 13: 799713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197952

RESUMEN

The COVID-19 pandemic has created an unprecedented need for epidemiological monitoring using diverse strategies. We conducted a project combining prevalence, seroprevalence, and genomic surveillance approaches to describe the initial pandemic stages in Betim City, Brazil. We collected 3239 subjects in a population-based age-, sex- and neighborhood-stratified, household, prospective; cross-sectional study divided into three surveys 21 days apart sampling the same geographical area. In the first survey, overall prevalence (participants positive in serological or molecular tests) reached 0.46% (90% CI 0.12-0.80%), followed by 2.69% (90% CI 1.88-3.49%) in the second survey and 6.67% (90% CI 5.42-7.92%) in the third. The underreporting reached 11, 19.6, and 20.4 times in each survey. We observed increased odds to test positive in females compared to males (OR 1.88 95% CI 1.25-2.82), while the single best predictor for positivity was ageusia/anosmia (OR 8.12, 95% CI 4.72-13.98). Thirty-five SARS-CoV-2 genomes were sequenced, of which 18 were classified as lineage B.1.1.28, while 17 were B.1.1.33. Multiple independent viral introductions were observed. Integration of multiple epidemiological strategies was able to adequately describe COVID-19 dispersion in the city. Presented results have helped local government authorities to guide pandemic management.

6.
Mem Inst Oswaldo Cruz ; 116: e210176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019069

RESUMEN

BACKGROUND: During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES: We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS: Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS: Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS: We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.


Asunto(s)
COVID-19 , Coinfección , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2
7.
Front Microbiol ; 12: 716628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621249

RESUMEN

Streptococcus pyogenes (group A Streptococcus-GAS) is an important pathogen for humans. GAS has been associated with severe and invasive diseases. Despite the fact that these bacteria remain universally susceptible to penicillin, therapeutic failures have been reported in some GAS infections. Many hypotheses have been proposed to explain these antibiotic-unresponsive infections; however, none of them have fully elucidated this phenomenon. In this study, we show that GAS strains have the ability to form antimicrobial persisters when inoculated on abiotic surfaces to form a film of bacterial agglomerates (biofilm-like environment). Our data suggest that efflux pumps were possibly involved in this phenomenon. In fact, gene expression assays by real-time qRT-PCR showed upregulation of some genes associated with efflux pumps in persisters arising in the presence of penicillin. Phenotypic reversion assay and whole-genome sequencing indicated that this event was due to non-inherited resistance mechanisms. The persister cells showed downregulation of genes associated with protein biosynthesis and cell growth, as demonstrated by gene expression assays. Moreover, the proteomic analysis revealed that susceptible cells express higher levels of ribosome proteins. It is remarkable that previous studies have reported the recovery of S. pyogenes viable cells from tissue biopsies of patients presented with GAS invasive infections and submitted to therapy with antibiotics. The persistence phenomenon described herein brings new insights into the origin of therapeutic failures in S. pyogenes infections. Multifactorial mechanisms involving protein synthesis inhibition, cell growth impairment and efflux pumps seem to play roles in the formation of antimicrobial persisters in S. pyogenes.

8.
Mem. Inst. Oswaldo Cruz ; 116: e210176, 2021. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1356488

RESUMEN

BACKGROUND During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.

9.
Phytopathology ; 110(11): 1751-1755, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32520631

RESUMEN

Xylella fastidiosa subsp. pauca, once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D, and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x, and Hib4 isolated, respectively, from coffee, plum, and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.


Asunto(s)
Citrus , Hibiscus , Prunus domestica , Xylella , Argentina , Brasil , Café , Enfermedades de las Plantas , Xylella/genética
10.
J Glob Antimicrob Resist ; 20: 36-40, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31279132

RESUMEN

OBJECTIVES: Enterobacter hormaechei is an important causative agent of severe infections in critically ill patients. Aminoglycosides are among the main antibiotics for the treatment of E. hormaechei infections, however the development of antimicrobial resistance is an increasing problem. RmtG is a 16S rRNA methyltransferase, a class of enzymes conferring high-level resistance to clinically relevant aminoglycosides. The aim of this study was to characterise the full genetic context of plasmids harbouring the rmtG gene in two aminoglycoside-resistant E. hormaechei isolated in Brazil. METHODS: ThermtG-harbouring plasmids were transferred to an Escherichia coli J53 recipient strain and were fully sequenced using a MiSeq sequencing system. Complete genome assemblies were accomplished using a combination of Newbler v.3.0, SPAdes 3.10.0 and phrap/cross_match programs. Plasmid sequences were annotated using RAST server and were then manually curated using BLAST databases and ISfinder. Easyfig 2.0 was used to map and compare regions of interest containing rmtG in both plasmids. RESULTS: Both isolates carried thermtG gene on an IncA/C plasmid of ˜152kb and ˜235kb, respectively, associated with a Tn3 transposon. The plasmids contain a transfer region as well as genes involved in plasmid stability and resistance to ß-lactams, sulfonamides and quaternary ammonium compounds. One of the plasmids also carried the mrk operon encoding type 3 fimbriae. CONCLUSION: This first detection ofrmtG in E. hormaechei supports the ability for horizontal transfer. The location in complex genetic platforms carried by Tn3 transposons in IncA/C plasmids may facilitate dissemination to other Gram-negative pathogens, further limiting treatment options.


Asunto(s)
Cromosomas Bacterianos/genética , Enterobacter/aislamiento & purificación , Infecciones por Enterobacteriaceae/diagnóstico , Metiltransferasas/genética , Plásmidos/genética , Infecciones Urinarias/microbiología , Proteínas Bacterianas/genética , Brasil , Enterobacter/clasificación , Enterobacter/genética , Transferencia de Gen Horizontal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación Completa del Genoma
11.
Clin Infect Dis ; 71(7): e141-e150, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31712802

RESUMEN

BACKGROUND: Carbapenemase-producing Klebsiella pneumoniae has become a global priority, not least in low- and middle-income countries. Here, we report the emergence and clinical impact of a novel Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP) sequence type (ST) 16 clone in a clonal complex (CC) 258-endemic setting. METHODS: In a teaching Brazilian hospital, a retrospective cohort of adult KPC-KP bloodstream infection (BSI) cases (January 2014 to December 2016) was established to study the molecular epidemiology and its impact on outcome (30-day all-cause mortality). KPC-KP isolates underwent multilocus sequence typing. Survival analysis between ST/CC groups and risk factors for fatal outcome (logistic regression) were evaluated. Representative isolates underwent whole-genome sequencing and had their virulence tested in a Galleria larvae model. RESULTS: One hundred sixty-five unique KPC-KP BSI cases were identified. CC258 was predominant (66%), followed by ST16 (12%). The overall 30-day mortality rate was 60%; in contrast, 95% of ST16 cases were fatal. Patients' severity scores were high and baseline clinical variables were not statistically different across STs. In multivariate analysis, ST16 (odds ratio [OR], 21.4; 95% confidence interval [CI], 2.3-202.8; P = .008) and septic shock (OR, 11.9; 95% CI, 4.2-34.1; P < .001) were independent risk factors for fatal outcome. The ST16 clone carried up to 14 resistance genes, including blaKPC-2 in an IncFIBpQIL plasmid, KL51 capsule, and yersiniabactin virulence determinants. The ST16 clone was highly pathogenic in the larvae model. CONCLUSIONS: Mortality rates were high in this KPC-KP BSI cohort, where CC258 is endemic. An emerging ST16 clone was associated with high mortality. Our results suggest that even in endemic settings, highly virulent clones can rapidly emerge demanding constant monitoring.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Adulto , Antibacterianos , Proteínas Bacterianas/genética , Brasil/epidemiología , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Estudios Retrospectivos , beta-Lactamasas/genética
12.
Phytopathology, v. 110, n. 11, p. 1751-1755, jun. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3065

RESUMEN

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

13.
BMC Genomics ; 20(1): 530, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253105

RESUMEN

BACKGROUND: Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. RESULTS: Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. CONCLUSIONS: Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Genómica , Salmonella typhi/genética , Bangladesh , Cromosomas Bacterianos/genética , Islas Genómicas/genética , Genotipo , Humanos , Anotación de Secuencia Molecular , Fenotipo , Plásmidos/genética , Salmonella typhi/efectos de los fármacos , Salmonella typhi/aislamiento & purificación
14.
Front Microbiol ; 10: 82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873127

RESUMEN

The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general, the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations.

15.
Artículo en Inglés | MEDLINE | ID: mdl-30533840

RESUMEN

Penicillium brasilianum (strain LaBioMMi 136) has been reported to be a great producer of secondary metabolites and a source of enzymes of biotechnological interest. Here, we report the draft genome sequence of P. brasilianum (strain LaBioMMi 136), isolated as an endophyte from the plant Melia azedarach (family Meliaceae).

16.
BMC Genomics ; 17: 534, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27485828

RESUMEN

BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici "group" are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian "Cerrados" soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299(T) and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. RESULTS: The genomes of R. leucaenae strains CFN 299(T) and CPAO 29.8 were estimated at 6.7-6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency. Types I, II, IV-pili, IV and V secretion systems were present in both strains and might help soil and host colonization as well as the symbiotic performance under stressful conditions. The symbiotic plasmid of CPAO 29.8 is highly similar to already described tropici pSyms, including five copies of nodD and three of nodA genes. R. leucaenae CFN 299(T) is capable of synthesizing Nod factors in the absence of flavonoids when submitted to osmotic stress, indicating that under abiotic stress the regulation of nod genes might be different. CONCLUSION: A detailed study of the genes putatively related to stress tolerance in R. leucaenae highlighted an intricate pattern comprising a variety of mechanisms that are probably orchestrated to tolerate the stressful conditions to which the strains are submitted on a daily basis. The capacity to synthesize Nod factors under abiotic stress might follow the same regulatory pathways as in CIAT 899(T) and may help both to improve bacterial survival and to expand host range to guarantee the perpetuation of the symbiosis.


Asunto(s)
Genes Bacterianos , Genoma Bacteriano , Genómica , Rhizobium/genética , Estrés Fisiológico/genética , Simbiosis/genética , Adaptación Biológica/genética , Ambiente , Genómica/métodos , Calor , Concentración de Iones de Hidrógeno , Fijación del Nitrógeno/genética , Presión Osmótica , Estrés Oxidativo/genética , Filogenia , Nodulación de la Raíz de la Planta/genética , Plásmidos/genética , Rhizobium/clasificación
17.
Genome Announc ; 3(6)2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26679590

RESUMEN

SEMIA 690(T) is a nitrogen-fixing symbiont of Centrosema pubescens, and comprises the recently described species Bradyrhizobium viridifuturi. Its draft genome indicates that it belongs to the Bradyrhizobium elkanii superclade. SEMIA 690(T) carries two copies of the regulatory nodD gene, and the nod and nif operons resemble those of Bradyrhizobium diazoefficiens.

18.
Genome Announc ; 3(6)2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26679591

RESUMEN

CNPSo 1112(T) is a nitrogen-fixing symbiont of perennial soybean, a tropical legume forage. Its draft genome indicates a large genome with a circular chromosome and 9,554 coding sequences (CDSs). Operons of nodulation, nitrogen fixation, and uptake hydrogenase were present in the symbiotic island, and the genome encompasses several CDSs of stress tolerance.

19.
Genome Announc ; 3(2)2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25745011

RESUMEN

Actinobacillus pleuropneumoniae is the causative agent of swine pleuropneumonia, a highly contagious disease associated with pigs of all ages that results in severe economic losses to the industry. Here, we report for the first time six genome sequences of A. pleuropneumoniae clinical isolates of serotype 8, found worldwide.

20.
PLoS Negl Trop Dis ; 8(9): e3176, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233456

RESUMEN

BACKGROUND: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. METHODOLOGY/PRINCIPAL FINDINGS: The T. rangeli haploid genome is ∼ 24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. CONCLUSIONS/SIGNIFICANCE: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.


Asunto(s)
Genoma de Protozoos , Filogenia , Trypanosoma rangeli/genética , Animales , Secuencia de Bases , ADN Protozoario/genética , Haploidia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA