Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Pak J Biol Sci ; 27(4): 210-218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38812112

RESUMEN

<b>Background and Objective:</b> The remarkable surface-to-volume ratio and efficient particle interaction capabilities of nanoparticles have garnered significant attention among researchers. Microalgal synthesis presents a sustainable and cost-effective approach to nanoparticle production, particularly noteworthy for its high metal uptake and ion reduction capabilities. This study focuses on the eco-friendly and straightforward synthesis of Silver (AgNPs) and Iron (FeNPs) nanoparticles by utilizing Spirulina (<i>Arthrospira platensis</i>) and <i>Chlorella pyrenoidosa</i> extract, devoid of any chemical reducing or capping agents. <b>Materials and Methods:</b> Following the mixing of 1 mM AgNO<sub>3</sub> and 1 mM iron oxide solution with the algal extract, the resulting filtrated solution underwent comprehensive characterization, including UV-visible absorption spectra analysis, observation of particle morphology, Zetasizer measurements and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) analysis. <b>Results:</b> The UV-visible spectroscopy revealed a maximum absorbance peak at 430-440 nm, confirming the successful green synthesis of AgNPs and FeNPs, as indicated by the distinct color change from transparent to dark reddish-yellow and brown to reddish-brown, respectively. The SEM-EDX analysis further elucidated the spherical morphology of the nanoparticles, with an average diameter of 93.71 nm for AgNPs and 6198 nm for FeNPs. The Zeta potential measurements indicated average values of -56.68 mV for AgNPs and 29.73 mV for FeNPs, with conductivities of 0.1764 and 0.6786 mS/cm, respectively. <b>Conclusion:</b> The observed bioaccumulation of silver and iron nanoparticles within the algal extract underscores its potential as an environmentally friendly and cost-effective method for nanoparticle synthesis. These findings suggested a promising avenues for the application of silver and iron nanoparticles in the field of nanobiotechnology. Future research endeavors could focus on optimizing preparation conditions and controlling nanoparticle size to further enhance their utility and effectiveness.


Asunto(s)
Hierro , Nanopartículas del Metal , Microalgas , Plata , Spirulina , Plata/química , Microalgas/metabolismo , Nanopartículas del Metal/química , Hierro/química , Spirulina/metabolismo , Spirulina/química , Tecnología Química Verde/métodos , Chlorella/metabolismo , Nanotecnología/métodos
3.
Front Mol Biosci ; 11: 1365440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469182

RESUMEN

Introduction: Cadmium (Cd) is a harmful heavy metal that results in many toxic issues. Urtica pilulifera showed potential pharmaceutical applications. This study investigated the possible ameliorative mechanism of Urtica pilulifera leaves extract (UPLE) against hepatotoxicity induced by cadmium chloride (CdCl2) in mice. Methods: In vitro phytochemical screening and the metal-chelating activity of UPLE were ascertained. Four groups of forty male mice were used (n = 10) as follows; Group 1 (G1) was a negative control. G2 was injected i.p., with UPLE (100 mg/kg b. wt) daily. G3 was injected i.p., with Cd (5 mg/kg b. wt) daily. G4 was injected with Cd as in G3 and with UPLE as in G2. On day 11, the body weight changes were evaluated, blood, and serum samples were collected for hematological and biochemical assessments. Liver tissues were used for biochemical, molecular, and histopathological investigations. Results: The results showed that UPLE contains promising secondary metabolites that considerably lessen the negative effects of Cd on liver. Furthermore, UPLE inhibited oxidative stress and inflammation; restored antioxidant molecules; and promoted nuclear-related factor-2 (Nrf-2) expression. Also, UPLE improved the histopathological alterations induced by Cd. Discussion: This study explored the beneficial role of UPLE treatment in Cd-induced liver injury through enhancing Nrf-2 signaling and antioxidant enzyme gene expression in the liver of mice. Therefore, UPLE could have valuable implications against hepatotoxicity induced by environmental cadmium exposure. Which can be used as a chelating agent against Cd.

4.
Sci Rep ; 14(1): 4162, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378923

RESUMEN

Applying extracts from plants is considered a safe approach in biomedicine and bio-nanotechnology. The present report is considered the first study that evaluated the seeds of Lasiurus scindicus and Panicum turgidum as biogenic agents in the synthesis of silver nanoparticles (AgNPs) which had bioactivity against cancer cells and bacteria. Assessment of NPs activity against varied cell lines (colorectal cancer HCT116 and breast cancer MDA MBA 231 and MCF 10A used as control) was performed beside the antibacterial efficiency. Different techniques (DLS, TEM, EDX and FTIR) were applied to characterize the biosynthesized AgNPs. The phytochemicals from both L. scindicus and Panicum turgidum were identified by GC-MS analysis. Spherical monodisperse NPs at average diameters of 149.6 and 100.4 nm were obtained from seed extract of L. scindicus (L-AgNPs) and P. turgidum, (P-AgNPs) respectively. A strong absorption peak at 3 keV is observed by the EDX spectrum in the tested NPs. Our study provided effective NPs in mitigating the tested cell lines and the lowest IC50 were 7.8 and 10.30 for MDA MB231 treated by L-AgNPs and P-AgNPs, respectively. Both fabricated NPs might differentially target the MDA MB231 cells compared to HCT116 and MCF10A. Ultrastructural changes and damage for the NPs-treated MDA MB231 cells were studied using TEM and LSM analysis. Antibacterial activity was also observed. About 200 compounds were identified in L. scindicus and P. turgidum by GC-MS analysis might be responsible for the NPs reduction and capping abilities. Efficient NPs against cancer cells and microbes were obtained, however large-scale screening is needed to validate our findings.


Asunto(s)
Nanopartículas del Metal , Panicum , Plata/química , Panicum/metabolismo , Nanopartículas del Metal/química , Extractos Vegetales/química , Antibacterianos/química , Semillas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
5.
Artículo en Inglés | MEDLINE | ID: mdl-37434588

RESUMEN

Background: Breast cancer is one of the most common malignancies among women. Recent studies revealed that differentially methylated regions (DMRs) are implicated in regulating gene expression. The goal of this research was to determine which genes and pathways are dysregulated in breast cancer when their promoters are methylated in an abnormal way, leading to differential expression. Whole-genome bisulfite sequencing was applied to analyze DMRs for eight peripheral blood samples collected from five Saudi females diagnosed with stages I and II of breast cancer aligned with three normal females. Three of those patients and three normal samples were used to determine differentially expressed genes (DEG) using Illumina platform NovaSeq PE150. Results: Based on ontology (GO) and KEGG pathways, the analysis indicated that DMGs and DEG are closely related to associated processes, such as ubiquitin-protein transferase activity, ubiquitin-mediated proteolysis, and oxidative phosphorylation. The findings indicated a potentially significant association between global hypomethylation and breast cancer in Saudi patients. Our results revealed 81 differentially promoter-methylated and expressed genes. The most significant differentially methylated and expressed genes found in gene ontology (GO) are pumilio RNA binding family member 1 (PUM1) and zinc finger AN1-type containing 2B (ZFAND2B) also known as (AIRAPL). Conclusion: The essential outcomes of this study suggested that aberrant hypermethylation at crucial genes that have significant parts in the molecular pathways of breast cancer could be used as a potential prognostic biomarker for breast cancer.

6.
Environ Sci Pollut Res Int ; 30(19): 56920-56929, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36930304

RESUMEN

The soft-bodied corals of the genera Sarcophyton and Sinularia (Alcyoniidae) are known as a warehouse of casbane and cembranoid diterpenoids with remarkable antitumor effects. Two casbane-type diterpenoids (1, 2) along with four cembrane-type diterpenoids (3-6) were isolated from the diethyl ether soluble fraction of the organic extracts of the Red Sea soft corals Sinularia leptoclados and Sarcophyton glaucum, respectively. The antiproliferative activity of all isolated compounds (1-6) against three hepatocellular carcinoma cells, namely, Huh-7, SNU 499, and HepG2, along with the normal cells EA.hy 926, was evaluated. Sinueracabanone D (1) displayed a remarkable antiproliferative effect against the examined cancer cell lines, especially HepG2 cells with IC50 of 4.0 ± 0.37 µM. Cell cycle analysis indicated compound 1 caused the accumulation of HepG2 cells in the G2/M-phase. Further, compound 1 exhibited significant pro-apoptotic activities in HepG2 cells as evidenced by annexin V staining, enhanced mRNA expression of Bax, cytochrome C, and caspase 3, as well as inhibition of Bcl2 expression. Also, challenging HepG2 cells with sinueracabanone D (1) enhanced the active oxygen species generation and decreased mitochondrial membrane potential. In conclusion, compound 1 possesses potent antiproliferative activities against HepG2 cells. These antiproliferative activities are mediated, at least partly, by their ability to induce apoptosis, mitochondrial dysfunction, and oxidative stress.


Asunto(s)
Antozoos , Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Línea Celular Tumoral , Apoptosis , Diterpenos/farmacología , Proliferación Celular
7.
Pharmgenomics Pers Med ; 15: 705-720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898556

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods: This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results: The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion: CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.

8.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563246

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer worldwide amongst males and females. CRC treatment is multidisciplinary, often including surgery, chemotherapy, and radiotherapy. Early diagnosis of CRC can lead to treatment initiation at an earlier stage. Blood biomarkers are currently used to detect CRC, but because of their low sensitivity and specificity, they are considered inadequate diagnostic tools and are used mainly for following up patients for recurrence. It is necessary to detect novel, noninvasive, specific, and sensitive biomarkers for the screening and diagnosis of CRC at earlier stages. The tumor microenvironment (TME) has an essential role in tumorigenesis; for example, extracellular vesicles (EVs) such as exosomes can play a crucial role in communication between cancer cells and different components of TME, thereby inducing tumor progression. The importance of miRNAs that are sorted into exosomes has recently attracted scientists' attention. Some unique sequences of miRNAs are favorably packaged into exosomes, and it has been illustrated that particular miRNAs can be directed into exosomes by special mechanisms that occur inside the cells. This review illustrates and discusses the sorted and transported exosomal miRNAs in the CRC microenvironment and their impact on CRC progression as well as their potential use as biomarkers.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Vesículas Extracelulares , MicroARNs , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Exosomas/genética , Exosomas/patología , Vesículas Extracelulares/patología , Femenino , Humanos , Masculino , MicroARNs/genética , Microambiente Tumoral/genética
9.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163286

RESUMEN

The high prevalence of gastrointestinal (GI) disorders among autism spectrum disorder (ASD) patients has prompted scientists to look into the gut microbiota as a putative trigger in ASD pathogenesis. Thus, many studies have linked the gut microbial dysbiosis that is frequently observed in ASD patients with the modulation of brain function and social behavior, but little is known about this connection and its contribution to the etiology of ASD. This present review highlights the potential role of the microbiota-gut-brain axis in autism. In particular, it focuses on how gut microbiota dysbiosis may impact gut permeability, immune function, and the microbial metabolites in autistic people. We further discuss recent findings supporting the possible role of the gut microbiome in initiating epigenetic modifications and consider the potential role of this pathway in influencing the severity of ASD. Lastly, we summarize recent updates in microbiota-targeted therapies such as probiotics, prebiotics, dietary supplements, fecal microbiota transplantation, and microbiota transfer therapy. The findings of this paper reveal new insights into possible therapeutic interventions that may be used to reduce and cure ASD-related symptoms. However, well-designed research studies using large sample sizes are still required in this area of study.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Eje Cerebro-Intestino/fisiología , Microbioma Gastrointestinal/fisiología , Encéfalo/metabolismo , Suplementos Dietéticos , Disbiosis/metabolismo , Trasplante de Microbiota Fecal , Enfermedades Gastrointestinales/metabolismo , Humanos , Microbiota , Prebióticos , Probióticos
10.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209210

RESUMEN

Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3), epi-rhazyaminine (4), rhazizine (5), 20-epi-sitsirikine (6), antirhine (7), and 16-epi-stemmadenine-N-oxide (8). The chemical structures were established by various spectroscopic experiments. Compounds 1-8 exhibited cytotoxic effects against three cancer cells with IC50 values ranging between 5.1 ± 0.10 and 93.2 ± 9.73 µM against MCF-7; 5.1 ± 0.28 and 290.2 ± 7.50 µM against HepG2, and 3.1 ± 0.17 and 55.7 ± 4.29 µM against HeLa cells. Compound 2 showed the most potent cytotoxic effect against all cancer cell lines (MCF-7, HepG2 and HeLa with IC50 values = 5.1 ± 0.10, 5.1 ± 0.28, and 3.1 ± 0.17 µM, respectively). Furthermore, compound 2 revealed a significant increase in the apoptotic cell population of MCF-7, HepG2, and HeLa cells, with 31.4 ± 0.2%, 29.2 ± 0.5%, and 34.9 ± 0.6%, respectively. Compound 2 decreased the percentage of the phagocytic pathway on HepG2 cells by 15.0 ± 0.1%. These findings can explain the antiproliferative effect of compound 2.


Asunto(s)
Adenocarcinoma , Antineoplásicos Fitogénicos , Apocynaceae/química , Apoptosis/efectos de los fármacos , Citotoxinas , Monoterpenos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Citotoxinas/química , Citotoxinas/farmacología , Talón , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Células MCF-7 , Monoterpenos/química , Monoterpenos/farmacología
11.
Pharmgenomics Pers Med ; 15: 131-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221709

RESUMEN

BACKGROUND: DNA methylation (DNAm) is one of the main epigenetic mechanisms that affects gene expression without changing the underlying DNA sequence. Aberrant DNAm has an implication in different human diseases such as cancer, schizophrenia, and autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that affects behavior, learning, and communication skills. Acyl-CoA synthetase family member 3 (ACSF3) encodes malonyl-CoA synthetase that is involved in the synthesis and oxidation of fatty acids. The dysregulation in such gene has been reported in combined malonic and methylmalonic aciduria associated with neurological symptoms such as memory problems, psychiatric diseases, and/or cognitive decline. This research aims to study DNAm in the transcription factor (TF) binding site of ACSF3 in Saudi autistic children. To determine whether the DNAm of the TF-binding site is a cause or a consequence of transcription regulation of ACSF3. METHODS: RT-qPCR and DNA methylight qPCR were used to determine the expression and DNAm level in the promoter region of ACSF3, respectively. DNA and RNA were extracted from 19 cases of ASD children and 18 control samples from their healthy siblings. RESULTS: The results showed a significant correlation between the gene expression of ACSF3 and specificity protein 1 (SP1) in 17 samples of ASD patients, where both genes were upregulated in 9 samples and downregulated in 8 samples. CONCLUSION: Although this study found no DNAm in the binding site of SP1 within the ACSF3 promoter, the indicated correlation highlights a possible role of ACSF3 and SP1 in ASD patients.

12.
Oxid Med Cell Longev ; 2021: 8891445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574987

RESUMEN

Euryops arabicus Steud (E. arabicus) belongs to the family Asteraceae. It has several uses in folk medicine in the Arabian Peninsula. The current study aimed at evaluating the wound healing properties of the E. arabicus extract in rats. Primarily, E. arabicus successfully accelerated cell migration in vitro and it also showed no signs of dermal toxicity. Topical application of E. arabicus extract (5% or 20%) expedited healing of excised skin in rats. Histological examinations indicated that E. arabicus shortened epithelization period, stimulated fibroblast activity, and increased collagen deposition in wound tissues. The plant extract exerted antioxidant activity as evidenced by inhibition of GSH depletion and MDA accumulation and enhanced mRNA expression of Sod1 in wound tissues collected at the end of the experiment. Further, E. arabicus inhibited the rise of TNF-α and IL-1ß in the skin wound region. The anti-inflammatory was confirmed by the observed down regulation of Ptgs2, Nos2, IL-6, and NF-κB mRNA expression. In addition, the extract enhanced the expression of TGF-ß1 and HIF-1α in wounded skin tissues as indicated immunohistochemically. Conclusively, E. arabicus expedites excision wound healing in rats. Collagen-enhancing, anti-inflammatory, and antioxidant properties mediate the observed wound healing activity. These findings might contribute to our understanding of the ethnobotanical use of E. arabicus in wounds.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Asteraceae/química , Colágeno/metabolismo , Piel/patología , Cicatrización de Heridas , Animales , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Recién Nacido , Concentración 50 Inhibidora , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Masculino , Malondialdehído/metabolismo , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Pruebas de Toxicidad Aguda , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas/efectos de los fármacos
13.
Physiol Behav ; 223: 113015, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32553641

RESUMEN

Gut microbiota (GM) plays a critical role in health maintenance. Previous reports connected GM with metabolic, immunologic and neurologic pathways. The main purpose of the current investigation was to study whether antibiotic-induced disturbances of GM affects psychological or behavioral conditions on mice as animal model. Mice were exposed to clindamycin or amoxicillin, and their behaviors were evaluated. Antibiotic-treated groups displayed reduced recognition memory and increased depression. No significant changes in the locomotor activity and anxiety were observed. Our data suggested that changes in GM composition by antibiotics may lead to the cognitive and behavioral deficit.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Animales , Antibacterianos/toxicidad , Ansiedad/inducido químicamente , Conducta Animal , Depresión/inducido químicamente , Ratones
14.
Metabolites ; 10(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079311

RESUMEN

The genus Emericella (Ascomycota) includes more than thirty species with worldwide distribution across many ecosystems. It is considered a rich source of diverse metabolites. The published classes of natural compounds that are discussed here are organized according to the following biosynthetic pathways: polyketides (azaphilones, cyclopentenone pigments, dicyanides, furan derivatives, phenolic ethers, and xanthones and anthraquinones); shikimate derivatives (bicoumarins); mevalonate derivatives (meroterpenes, sesquiterpenes, sesterterpenes and steroids) and amino acids derivatives (alkaloids (indole-derivatives, isoindolones, and piperazine) and peptides (depsipeptides)). These metabolites produce the wide array of biological effects associated with Emericella, including antioxidant, antiproliferative, antimalarial, antiviral, antibacterial, antioxidant, antihypertensive, anti-inflammatory, antifungal and kinase inhibitors. Careful and extensive study of the diversity and distribution of metabolites produced by the genus Emericella (either marine or terrestrial) revealed that, no matter the source of the fungus, the composition of the culture medium effectively controls the metabolites produced. The topic of this review is the diversity of metabolites that have been identified from Emericella, along with the contextual information on either their biological or geographic sources. This review presents 236 natural compounds, which were reported from marine and terrestrial Emericella. Amongst the reported compounds, only 70.2% were biologically assayed for their effects, including antimicrobial or cytotoxicity. This implies the need for substantial investigation of alternative activities. This review includes a full discussion of compound structures and disease management, based on materials published from 1982 through December 2019.

15.
J Ethnopharmacol ; 247: 112278, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31589967

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euryops arabicus (Asteraceae) is grown in Arab Peninsula. Its aerial parts possess ethnomedicinal applications against several inflammatory conditions. AIM OF THE STUDY: To evaluate the anti-inflammatory activity of Euryops arabicus (E. arabicus) organic extract as well as its major polymethoxylated flavonoids. MATERIALS AND METHODS: Acute toxicity of the total extract of E. ararbicus was evaluated by assessing LD50. In vivo anti-inflammatory activity was evaluated in rats injected with carrageenan in the plantar area. Paw edema volume, histological changes and rats'stair climbing and motility were assessed. In vitro anti-inflammatory activity of the isolated compounds was evaluated in peripheral blood mononuclear cells (PBMCs) challenged with carrageenan. Inflammation markers were assessed in cellular lysates and collected media. RESULTS: The extract was found safe and considered unclassified with an oral LD50 > 2000 mg/kg in rats. Pretreatment of rats with a total extract of E. arabicus at doses of 100 and 250 mg/kg significantly inhibited carrageenan-induced increase in paw edema volume and histopathological changes. Also, it significantly ameliorated diminution of climbing and motility. Phytochemical studies led to the isolation and identification of five polymethoxylated flavonoids. The anti-inflammatory properties of the isolated compounds were evaluated in carrageenan-challenged peripheral blood mononuclear cells (PBMCs). All compounds exhibited appreciable antioxidant activities. Further, pre-incubation of the cells with the isolated metabolites significantly ameliorated the rise in cyclo-oxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by carrageenan challenge. Further, the compounds inhibited the leakage of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and myeloperoxidase (MPO) in media collected from stimulated cells. CONCLUSION: E. arabicus exhibited in vivo anti-inflammatory effects in the carrageenan model as it ameliorated rat paw edema, histopathological changes and movement dysfunction. in vitro activity of isolated compounds was confirmed in stimulated PBMCs. Thus, the anti-inflammatory activity of E. arabicus can be attributed, at least partly, to its anti-oxidant, anti-inflammatory and anti-chemotactic properties.


Asunto(s)
Antiinflamatorios/farmacología , Asteraceae/química , Flavonoides/farmacología , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Administración Oral , Animales , Antiinflamatorios/uso terapéutico , Carragenina/inmunología , Quimiotaxis/efectos de los fármacos , Modelos Animales de Enfermedad , Etnofarmacología , Flavonoides/uso terapéutico , Humanos , Inflamación/inmunología , Dosificación Letal Mediana , Leucocitos Mononucleares , Masculino , Medicina Arábiga/métodos , Extractos Vegetales/uso terapéutico , Ratas , Pruebas de Toxicidad Aguda
16.
Molecules ; 24(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965598

RESUMEN

Alcyonium corals are benthic animals, which live in different climatic areas, including temperate, Antarctic and sub-Antarctic waters. They were found to produce different chemical substances with molecular diversity and unique architectures. These metabolites embrace several terpenoidal classes with different functionalities. This wide array of structures supports the productivity of genus Alcyonium. Yet, majority of the reported compounds are still biologically unscreened and require substantial efforts to explore their importance. This review is an entryway to push forward the bio-investigation of this genus. It covers the era from the beginning of reporting metabolites from Alcyonium up to March 2019. Ninety-two metabolites are presented; forty-two sesquiterpenes, twenty-five diterpenes and twenty-five steroids have been reported from sixteen species.


Asunto(s)
Antozoos/química , Terpenos/química , Animales , Estructura Molecular , Metabolismo Secundario , Terpenos/aislamiento & purificación
17.
Molecules ; 24(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646584

RESUMEN

Alcyonacea (soft corals and gorgonia) are well known for their production of a wide array of unprecedented architecture of bioactive metabolites. This diversity of compounds reported from Alcyonacea confirms its productivity as a source of drug leads and, consequently, indicates requirement of further chemo-biological investigation. This review can be considered a roadmap to investigate the Alcyonacea, particularly those produce nitrogen-containing metabolites. It covers the era from the beginning of marine nitrogen-containing terpenoids isolation from Alcyonacea up to December 2018. One hundred twenty-one compounds with nitrogenous moiety are published from fifteen genera. Their prominent biological activity is evident in their antiproliferative effect, which makes them interesting as potential leads for antitumor agents. For instance, eleutherobin and sarcodictyins are in preclinical or clinical stages.


Asunto(s)
Antozoos/química , Antozoos/metabolismo , Metaboloma , Metabolómica , Nitrógeno/química , Alcaloides/química , Animales , Ceramidas/química , Cerebrósidos/química , Diterpenos/química , Metabolómica/métodos , Estructura Molecular , Unión Proteica , Terpenos/química , Tubulina (Proteína)/metabolismo
18.
Molecules ; 22(5)2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28505125

RESUMEN

Chromatographic fractionation of the CH2Cl2/MeOH extract of the Red Sea red alga Laurencia obtusa gave two new hexahydrofuro[3,2-b]furan-based C15-acetogenins, namely, isolaurenidificin (1) and bromlaurenidificin (2). The chemical structures were elucidated based on extensive analyses of their spectral data. Compounds 1 and 2 showed no toxicity (LC50 > 12 mM) using Artemia salina as test organism. Both compounds showed weak cytotoxicity against A549, HepG-2, HCT116, MCF-7, and PC-3 cells, however, they exhibited a relatively potent cytotoxic activity against peripheral blood neutrophils. This can be attributed partly to induction of apoptosis.


Asunto(s)
Acetogeninas/química , Laurencia/química , Acetogeninas/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Estructura Molecular , Neutrófilos/efectos de los fármacos , Resonancia Magnética Nuclear Biomolecular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA