Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Micromachines (Basel) ; 15(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39203613

RESUMEN

Acetaldehyde is a volatile organic compound that can cause damage at the cellular and genomic levels. The monitoring of acetaldehyde gas at low concentrations requires fast-response and low-cost sensors. Herein, we propose the design of an acetaldehyde gas sensor based on a low-cost Microelectromechanical System (MEMS) process. This sensor is formed by a single-clamped piezoelectric multilayer resonator (3000 × 1000 × 52.2 µm) with a simple operating principle and easy signal processing. This resonator uses a zinc oxide piezoelectric layer (1 µm thick) and a sensing film of titanium oxide (1 µm thick). In addition, the resonator uses a support layer of 304 stainless steel (50 µm thick) and two aluminum layers (100 nm thick). Analytical and Finite-Element Method (FEM) models are developed to predict the mechanical behavior of the gas sensor, considering the influence of the different layers of the resonator. The analytical results agree well with respect to the FEM model results. The gas sensor has a first bending frequency of 4722.4 Hz and a sensitivity of 8.22 kHz/g. A minimum detectable concentration of acetaldehyde of 102 ppm can be detected with the proposed sensor. This gas sensor has a linear behavior to detect different acetaldehyde concentrations using the frequency shifts of its multilayer resonator. The gas sensor design offers advantages such as small size, a light weight, and cost-efficient fabrication.

3.
Bioengineering (Basel) ; 11(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927819

RESUMEN

Ischemic heart disease remains a leading cause of mortality worldwide, which has promoted extensive therapeutic efforts. Stenting has emerged as the primary intervention, particularly among individuals aged 70 years and older. The geometric specifications of stents must align with various mechanical performance criteria outlined by regulatory agencies such as the Food and Drug Administration (FDA). Finite element method (FEM) analysis and computational fluid dynamics (CFD) serve as essential tools to assess the mechanical performance parameters of stents. However, the growing complexity of the numerical models presents significant challenges. Herein, we propose a method to determine the mechanical performance parameters of stents using a simplified FEM model comprising solid and shell elements. In addition, a baseline model of a stent is developed and validated with experimental data, considering parameters such as foreshortening, radial recoil, radial recoil index, and radial stiffness of stents. The results of the simplified FEM model agree well with the baseline model, decreasing up to 80% in computational time. This method can be employed to design stents with specific mechanical performance parameters that satisfy the requirements of each patient.

4.
Heliyon ; 10(7): e28482, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601514

RESUMEN

In recent years, the growth of Internet of Things devices has increased the use of sustainable energy sources. An alternative technology is offered by triboelectric nanogenerators (TENGs) that can harvest green energy and convert it into electrical energy. Herein, we assessed three different nopal powder types that were used as triboelectric layers of eco-friendly and sustainable TENGs for renewable energy harvesting from environmental vibrations and powering electronic devices. These nanogenerators were fabricated using waste and recycled materials with a compact design for easy transportation and collocation on non-homogeneous surfaces of different vibration or motion sources. In addition, these TENGs have advantages such as high output performance, stable output voltage, lightweight, low-cost materials, and a simple fabrication process. These nanogenerators use the contact-separation mode between two triboelectric layers to convert the vibration energy into electrical energy. TENG with the best output performance is based on dehydrated nopal powder, generating an output power density of 2.145 mWm-2 with a load resistance of 39.97 MΩ under 3g acceleration and 25 Hz operating frequency. The proposed TENGs have stable output voltages during 22500 operating cycles. These nanogenerators can light 116 ultra-bright blue commercial LEDs and power a digital calculator. Also, the TENGs can be used as a chess clock connected to a mobile phone app for smart motion sensing. These nanogenerators can harvest renewable vibration energy and power electronic devices, sensors, and smart motion sensing.

5.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136177

RESUMEN

We explored the potential of different nanoparticles (TiO2, CaCO3, and Al2O3), considering their pure form and modified with cinnamon essential oil (CEO). These materials were characterized using various techniques, including FTIR spectroscopy, XRD analysis, TGA, and SEM. The interaction between CEO and nanoparticles changed depending on the nanoparticle type. Al2O3 nanoparticles exhibited the strongest interaction with CEO, increasing their antioxidant capacity by around 40% and their transfer of antimicrobial properties, particularly against Gram-negative bacteria. In contrast, TiO2 and CaCO3 nanoparticles showed limited interaction with CEO, resulting in lower antioxidant capacity and antimicrobial activity. Incorporating pure and CEO-modified nanoparticles into polylactic acid (PLA) films improved their mechanical and thermal properties, which are suitable for applications requiring greater strength. This research highlights the potential of metal oxide nanoparticles to enhance the antimicrobial and antioxidant capabilities of polymers. In addition, incorporating cinnamon essential oil can increase the antioxidant and antimicrobial effectiveness of the metal oxide nanoparticles and improve the mechanical and thermal properties of PLA films. Thus, these PLA films exhibit favorable characteristics for active packaging applications.

6.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139637

RESUMEN

Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.

7.
Membranes (Basel) ; 13(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37887997

RESUMEN

Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, blood filtration and bio-medical analysis. For the filtration of water, as well as other liquids, the micro-filtration based microfluidic devices are considered as potential candidates to fulfill the desired conditions and requirements. The micro pore membrane can be designed and fabricated in such a way that it maximizes the removal of impurities from fluid. The low-cost micro-filtration method has been reported to provide clean fluid for biomedical applications and other purposes. In the work, anodic-aluminum-oxide-based membranes have been fabricated with different pore sizes ranging from 70 to 500 nm. A soft computing technique like fuzzy logic has been used to estimate the filtration parameters. Then, the finite-element-based analysis system software has been used to study the fluid flow through the double membrane. Then, filtration is performed by using a dual membrane and the clogging of the membrane has been studied after different filtration cycles using characterization like a scanning electron microscope. The filtration has been done to purify the contaminated fluid which has impurities like bacteria and protozoans. The membranes have been tested after each cycle to verify the results. The decrease in permeance with respect to the increase in the velocity of the fluid and the permeate volume per unit clearly depicts the removal of containments from the fluid after four and eight cycles of filtration. The results clearly show that the filtration efficiency can be improved by increasing the number of cycles and adding a dual membrane in the micro-fluidic device. The results show the potential of dual anodic aluminum oxide membranes for the effective filtration of fluids for biomedical applications, thereby offering a promising solution to address current challenges.

8.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37177398

RESUMEN

Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric nanogenerator based on dehydrated nopal powder (NOP-TENG) as novel triboelectric material. In addition, this nanogenerator uses a polyimide film tape adhered to two copper-coated Bakelite plates. The NOP-TENG generates a power density of 2309.98 µW·m-2 with a load resistance of 76.89 MΩ by applying a hand force on its outer surface. Furthermore, the nanogenerator shows a power density of 556.72 µW·m-2 with a load resistance of 76.89 MΩ and under 4g acceleration at 15 Hz. The output voltage of the NOP-TENG depicts a stable output performance even after 27,000 operation cycles. This nanogenerator can light eighteen green commercial LEDs and power a digital calculator. The proposed NOP-TENG has a simple structure, easy manufacturing process, stable electric behavior, and cost-effective output performance. This portable nanogenerator may power electronic devices using different vibration energy sources.

9.
Antioxidants (Basel) ; 12(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37237956

RESUMEN

One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO2) nanoparticles (NPs) (0.1% w/w) chemically modified with cinnamon essential oil (CEO). For the modification of the NPs, two methods (M1 and M2) were tested, and their effects on the chemical, mechanical, and physical properties of the polymer matrix were evaluated. The results showed that CEO conferred to SiO2 NPs had a high percentage of 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical inhibition (>70%), cell viability (>80%), and strong inhibition to E. coli, at 45 and 11 µg/mL for M1 and M2, respectively, and thermal stability. Films were prepared with these NPs, and characterizations and evaluations on apple storage were performed for 21 days. The results show that the films with pristine SiO2 improved tensile strength (28.06 MPa), as well as Young's modulus (0.368 MPa) since PLA films only presented values of 27.06 MPa and 0.324 MPa, respectively; however, films with modified NPs decreased tensile strength values (26.22 and 25.13 MPa), but increased elongation at break (from 5.05% to 10.32-8.32%). The water solubility decreased from 15% to 6-8% for the films with NPs, as well as the contact angle, from 90.21° to 73° for the M2 film. The water vapor permeability increased for the M2 film, presenting a value of 9.50 × 10-8 g Pa-1 h-1 m-2. FTIR analysis indicated that the addition of NPs with and without CEO did not modify the molecular structure of pure PLA; however, DSC analysis indicated that the crystallinity of the films was improved. The packaging prepared with M1 (without Tween 80) showed good results at the end of storage: lower values in color difference (5.59), organic acid degradation (0.042), weight loss (24.24%), and pH (4.02), making CEO-SiO2 a good component to produce active packaging.

10.
Plant Cell ; 35(8): 2910-2928, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37195876

RESUMEN

The regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci. Here, we show that the Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE9 (HDA9) complex is a conditional suppressor of miRNA biogenesis, particularly in response to abscisic acid (ABA). When treated with ABA, hos15/hda9 mutants show enhanced transcription of pri-miRNAs that is accompanied by increased processing, leading to overaccumulation of a set of mature miRNAs. Moreover, upon recognition of the nascent pri-miRNAs, the ABA-induced recruitment of the HOS15-HDA9 complex to MIRNA loci is guided by HYPONASTIC LEAVES 1 (HYL1). The HYL1-dependent recruitment of the HOS15-HDA9 complex to MIRNA loci suppresses expression of MIRNAs and processing of pri-miRNA. Most importantly, our findings indicate that nascent pri-miRNAs serve as scaffolds for recruiting transcriptional regulators, specifically to MIRNA loci. This indicates that RNA molecules can act as regulators of their own expression by causing a negative feedback loop that turns off their transcription, providing a self-buffering system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
11.
Cell Rep ; 42(1): 112029, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689329

RESUMEN

Transposons are mobile elements that are commonly silenced to protect eukaryotic genome integrity. In plants, transposable element (TE)-derived inverted repeats (IRs) are commonly found near genes, where they affect host gene expression. However, the molecular mechanisms of such regulation are unclear in most cases. Expression of these IRs is associated with production of 24-nt small RNAs, methylation of the IRs, and drastic changes in local 3D chromatin organization. Notably, many of these IRs differ between Arabidopsis thaliana accessions, causing variation in short-range chromatin interactions and gene expression. CRISPR-Cas9-mediated disruption of two IRs leads to a switch in genome topology and gene expression with phenotypic consequences. Our data show that insertion of an IR near a gene provides an anchor point for chromatin interactions that profoundly impact the activity of neighboring loci. This turns IRs into powerful evolutionary agents that can contribute to rapid adaptation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Cromatina/genética , ARN , Proteínas de Arabidopsis/genética , Metilación , Elementos Transponibles de ADN/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas
12.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36558257

RESUMEN

The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.

13.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36234674

RESUMEN

In previous work, the isolated polyphenolic compound (PPC) quercetin was used as a reducing agent in the formation of silver nanoparticles (AgNPs), testing two types of quercetin. This PPC is a bioactive molecule that provides the electrons for the reduction of silver ions to zerovalent silver. The results demonstrated that quercetin in dietary supplement presentation was better than reagent grade quercetin for the synthesis of AgNPs, and the difference between them was that the dietary supplement had microcrystalline cellulose (CM) in its formulation. Therefore, this dietary anti-caking agent was added to the reagent-grade quercetin to validate this previously found improvement. AgNPs were obtained at neutral pH by a green route using quercetin as a reducing agent and microcrystalline cellulose and maltodextrin as stabilizing agents. In addition, different ratios were evaluated to find the optimum ratio. Ultraviolet-Visible spectroscopy (UV-VIS), Atomic Force Microscope (AFM), Z-potential, Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) were used for characterization. The antibacterial activity of the S. aureus and E. coli agent was tested by the disk diffusion and microdilution method. According to the results, this green synthesis needs the use of food stabilizer when working at pH 7 to maintain AgNPs in the long term. The ideal ratio of reducing the agent:stabilizing agent was 1:2, since with this system stable AgNPs are obtained for 2 months and with improved antimicrobial activity, validating this method was ecologically and economically viable.

14.
Vertex ; 33(157): 23-33, 2022 10 10.
Artículo en Español | MEDLINE | ID: mdl-36219185

RESUMEN

The pandemic caused by COVID-19 in the world, in its different periods, produced many changes in sleep and in various areas of mental health. Objectives: To evaluate and to compare sleep quality and aspects of mental health during two different periods of the COVID-19 pandemic, as well as to analyze some changes in habits/behaviors. Subjects and methods: A cross-sectional study was carried out, through an anonymous survey. Demographic information, sleep quality, depressive and anxiety symptoms were analyzed. Of the total, 998 surveys were selected. The survey focused on 2 time periods, from March to July 2020 and from March to July 2021. Results: When sleep quality was compared during the 2020 versus 2021 periods, the percentage of poor sleepers went from 51% to 59% in the second period. Regarding depressive symptoms, it went from 21.1 to 16.3% and the percentage of anxiety symptoms went from 59.5 to 47.6%. Poor sleep quality affected more people in 2021 compared to 2020. The percentage of participants with symptoms of anxiety and depression decreased in 2021. People changed some habits/behaviors, such as: changing routine schedules, acquiring pets, sharing their dreams more, and remembering them more frequently. This article contributes to knowing various aspects of sleep, mood swings and changes in habits/behaviors that occurred during the pandemic in Argentina.


La pandemia provocada por COVID-19 en el mundo, en sus diferentes períodos, produjo muchos cambios en el sueño y en diversas áreas de la salud mental. Objetivos: Evaluar y comparar calidad de sueño y aspectos de la salud mental durante dos períodos diferentes de la pandemia por COVID-19, como así también analizar algunos cambios en hábitos/conductas. Materiales y métodos: Se realizó un estudio de corte transversal, a través de una encuesta anónima de la que participaron 998 personas. La misma se realizó en dos períodos de tiempo. El primer período comprendió de marzo a julio de 2020, el segundo período abarcó de marzo a julio 2021. El análisis consideró: información demográfica, calidad del sueño, síntomas depresivos y de ansiedad. Resultados: Al comparar la calidad de sueño durante los períodos 2020 versus el 2021, el porcentaje de malos dormidores pasó del el 51% al 59% en el segundo período. En cuanto a los síntomas depresivos pasó del 21,1 al 16,3% y el porcentaje de síntomas de ansiedad pasó del 59,5 al 47,6%. La mala calidad del sueño afectó a un número mayor de personas en el 2021 que en el 2020 mientras que el porcentaje de participantes con síntomas de ansiedad y de depresión disminuyó en el año 2021. En la segunda fase de la encuesta las personas modificaron algunos hábitos/conductas como ser: cambiaron horarios de rutina, adquirieron mascotas, compartieron más sus sueños y recordaban con mayor frecuencia los mismos. Este artículo contribuye a conocer diversos aspectos del sueño, los cambios de humor y modificaciones de hábitos/conductas que ocurrieron durante la pandemia en Argentina.


Asunto(s)
COVID-19 , Argentina , Hábitos , Humanos , Pandemias , Estudios Retrospectivos , Calidad del Sueño
15.
Nanomaterials (Basel) ; 12(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893517

RESUMEN

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants. Various systems and equipment have been utilized to gather natural energy. However, most technologies need a huge amount of infrastructure and expensive equipment in order to power electronic gadgets, smart sensors, and wearable devices. Nanogenerators have recently emerged as an alternative technique for collecting energy from both natural and artificial sources, with significant benefits such as light weight, low-cost production, simple operation, easy signal processing, and low-cost materials. These nanogenerators might power electronic components and wearable devices used in a variety of applications such as telecommunications, the medical sector, the military and automotive industries, and internet of things (IoT) devices. We describe new research on the performance of nanogenerators employing several green energy acquisition processes such as piezoelectric, electromagnetic, thermoelectric, and triboelectric. Furthermore, the materials, applications, challenges, and future prospects of several nanogenerators are discussed.

16.
Adv Mater Interfaces ; 9(15): 2102526, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35538925

RESUMEN

The biofunctionalization of graphene field-effect transistors (GFETs) through vinylsulfonated-polyethyleneimine nanoscaffold is presented for enhanced biosensing of severe acute respiratory-related coronavirus 2 (SARS-CoV-2) spike protein and human ferritin, two targets of great importance for the rapid diagnostic and monitoring of individuals with COVID-19. The heterobifunctional nanoscaffold enables covalent immobilization of binding proteins and antifouling polymers while the whole architecture is attached to graphene by multivalent π-π interactions. First, to optimize the sensing platform, concanavalin A is employed for glycoprotein detection. Then, monoclonal antibodies specific against SARS-CoV-2 spike protein and human ferritin are anchored, yielding biosensors with limit of detections of 0.74 and 0.23 nm, and apparent affinity constants ( K D G F E T ) of 6.7 and 8.8 nm, respectively. Both biosensing platforms show good specificity, fast time response, and wide dynamic range (0.1-100 nm). Moreover, SARS-CoV-2 spike protein is also detected in spiked nasopharyngeal swab samples. To rigorously validate this biosensing technology, the GFET response is matched with surface plasmon resonance measurements, exhibiting linear correlations (from 2 to 100 ng cm-2) and good agreement in terms of K D values. Finally, the performance of the biosensors fabricated through the nanoscaffold strategy is compared with those obtained through the widely employed monopyrene approach, showing enhanced sensitivity.

17.
Sleep Sci ; 15(Spec 1): 41-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273746

RESUMEN

Introduction: The mandatory social isolation (MSI) due to the pandemic caused by COVID-19 in the world produced many changes in sleep and different areas of mental health. Objectives: To evaluate the early effects of MSI on sleep, anxiety, and depression in Argentina. Material and Methods: An anonymous observational cross-sectional web-based study was distributed throughout the country and was completed by 2,594 respondents to analyze demographic information, quality of sleep, REM sleep-related events, depressive, and anxiety symptoms. Results: The study revealed that 53, 21, 22, 23, and 16% of people surveyed were poor sleepers, had dream-related behaviors, nightmares, depression, and anxiety symptoms, respectively. Multivariate logistic regression showed a positive correlation between anxiety, being a poor sleeper, and having nightmares. Conclusion: We identified the early effects of MSI on sleep quality, dreaming activity, anxiety, and depression in Argentina during the COVID-19 outbreak. Our findings can be used to formulate sleep and psychological interventions to improve mental health during the pandemic and post-pandemic times.

18.
Nat Rev Urol ; 19(4): 240-252, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35105978

RESUMEN

Every day, more than one million people worldwide acquire a sexually transmitted infection (STI). This public health problem has a direct effect on women's reproductive and sexual health as STIs can cause irreversible damage to fertility and can have negative consequences associated with discrimination and social exclusion. Infection with one sexually transmitted pathogen predisposes to co-infection with others, suggesting the existence of shared pathways that serve as molecular links between these diseases. Galectins, a family of ß-galactoside-binding proteins, have emerged as endogenous mediators that facilitate cell-surface binding, internalization and cell invasion of many sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Candida albicans, HIV and herpes simplex virus. The ability of certain galectins to dimerize or form multimeric complexes confers the capacity to interact simultaneously with glycosylated ligands on both the pathogen and the cervico-vaginal tissue on these proteins. Galectins can act as a bridge by engaging glycans from the pathogen surface and glycosylated receptors from host cells, which is a mechanism that has been shown to be shared by several sexually transmitted pathogens. In the case of viruses and obligate intracellular bacteria, binding to the cell surface promotes pathogen internalization and cell invasion. Inflammatory responses that occur in cervico-vaginal tissue might trigger secretion of galectins, which in turn control the establishment, evolution and severity of STIs. Thus, galectin-targeted therapies could potentially prevent or decrease STIs caused by a diverse array of pathogenic microorganisms; furthermore, anti-galectin agents might reduce treatment costs of STIs and reach the most vulnerable populations.


Asunto(s)
Enfermedades de Transmisión Sexual , Trichomonas vaginalis , Chlamydia trachomatis , Femenino , Galectinas , Humanos , Neisseria gonorrhoeae , Prevalencia , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Enfermedades de Transmisión Sexual/microbiología , Enfermedades de Transmisión Sexual/prevención & control , Vagina/microbiología
19.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055286

RESUMEN

Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young's modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young's modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.

20.
Vertex ; XXXII(151): 6-14, 2021 03.
Artículo en Español | MEDLINE | ID: mdl-34783772

RESUMEN

The confinement due to the pandemic caused by COVID-19 in Argentina produced many changes. OBJECTIVE: To assess sleep, anxiety disorders, and depression in adults. SUBJECTS AND METHODS: Through an anonymous survey distributed in the country through the web that was completed by 2,594 people (69% women, 32% men). 30% reported working in the health field. Demographic information, quality and other sleep variables, depressive symptoms and anxiety were analyzed. RESULTS: The general prevalence of bad sleepers, depressive symptoms, and anxiety were 53%, 21.1%, and 43.8%, respectively. Those over 65 years of age showed a significantly higher prevalence of going to bed earlier and having a lower sleep onset latency. Multivariate logistic regression showed that age <55 years and being a woman were associated with anxiety and with being a poor sleeper. Sleeping more than 10 hours, going to bed later, being a poor sleeper and anxiety, were associated with depressive symptoms. Being a healthcare worker was associated with more anxiety. CONCLUSIONS: We identified poor sleep quality and alteration mental health in times of confinement. We found that more than half of the evaluated population turned out to be poor sleepers and presented high scores of symptoms related to anxiety and depression. Additionally, health workers presented more anxiety than the rest.


Asunto(s)
COVID-19 , Depresión , Adulto , Ansiedad/epidemiología , Ansiedad/etiología , Trastornos de Ansiedad/epidemiología , Depresión/epidemiología , Depresión/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA