Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37381, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39290271

RESUMEN

Vitamin C (VIT C) is an antioxidant that prevents skin aging. Although dermal delivery is one of the most effective routes to transport VIT C to the skin, the impact of this route can be limited by the barrier function of the stratum corneum (SC). Additionally, VIT C rapidly oxidized and degraded under light and temperature. Therefore, this study provides an approach to utilizing microneedles (MNs) to improve the dermal delivery of VIT C and enhance its stability by incorporating a stabilizing system of ethylenediaminetetraacetic acid (EDTA) and sodium metabisulfite (Meta) within the MNs. Vitamin C microneedles (VIT C MNs) were fabricated using different biodegradable polymers and various concentrations of EDTA/Meta. VIT C MNs were evaluated for morphology, VIT C content, mechanical properties, dissolution rate, needles' insertion, physicochemical properties, ex vivo permeation, viscosity of VIT C polymeric solutions, cytotoxicity, and stability. The results showed that VIT C MNs were uniform and mechanically strong. The recovery of VIT C in MNs was 88.3-90.0 %. The dissolution rate of MNs was <30 min. The flux of VIT C varied based on the composition of MNs. VIT C MNs demonstrated safety against human dermal fibroblasts. VIT C MNs with EDTA/Meta (0.1/0.3 %) were stable under different storage conditions for two months. In conclusion, VIT C MNs were successfully developed using biodegradable polymers, and the stabilizing system (EDTA/META) provided a stable dermal delivery system for VIT C to protect skin from aging.

2.
Gels ; 9(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37504471

RESUMEN

Nanoemulsions and bigels are biphasic delivery systems that can be used for topical applications. The aim of this study was to incorporate an oil-in-water ciprofloxacin hydrochloride nanoemulsion (CIP.HCl NE) into two types of bigels, Type I (oleogel (OL)-in-hydrogel (WH)) and Type II (WH-in-OL) to enhance drug penetration into skin and treat topical bacterial infections. Bigels were prepared at various ratios of OL and WH (1:1, 1:2, and 1:4). Initially, CIP.HCl NE was prepared and characterized in terms of droplet size, zeta potential, polydispersity index, morphology, and thermodynamic and chemical stability. Then CIP.HCl NE was dispersed into the OL or WH phase of the bigel. The primary physical stability studies showed that Type I bigels were physically stable, showing no phase separation. Whereas Type II bigels were physically unstable, hence excluded from the study. Type I bigels were subjected to microstructural, rheological, in vitro release, antimicrobial, and stability studies. The microscopic images showed a highly structured bigel network with nanoemulsion droplets dispersed within the bigel network. Additionally, bigels exhibited pseudoplastic flow and viscoelastic properties. A complete drug release was achieved after 4-5 h. The in vitro and ex vivo antimicrobial studies revealed that bigels exhibited antimicrobial activity against different bacterial strains. Moreover, stability studies showed that the rheological properties and physical and chemical stability varied based on the bigel composition over three months. Therefore, the physicochemical and rheological properties, drug release rate, and antimicrobial activity of Type I bigels could be modified by altering the OL to WH ratio and the phase in which the nanoemulsion dispersed in.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA