Your browser doesn't support javascript.
loading
Next-generation sequencing analysis reveals high bacterial diversity in wild venomous and non-venomous snakes from India
Krishnankutty, Sajesh Puthenpurackal; Muraleedharan, Megha; Perumal, Rajadurai Chinnasamy; Michael, Saju; Benny, Jubina; Balan, Bipin; Kumar, Pramod; Manazhi, Jishnu; Kumar, Bangaruswamy Dhinoth; Santhosh, Sam; Thomas, George; Gupta, Ravi; Zachariah, Arun.
Afiliação
  • Krishnankutty, Sajesh Puthenpurackal; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Muraleedharan, Megha; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Perumal, Rajadurai Chinnasamy; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Michael, Saju; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Benny, Jubina; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Balan, Bipin; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Kumar, Pramod; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Manazhi, Jishnu; Department of Forests and Wildlife. Sulthan Batheri. India
  • Kumar, Bangaruswamy Dhinoth; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Santhosh, Sam; AgriGenome Labs Pvt. SmartCity Kochi. Kakkanad. India
  • Thomas, George; SciGenom Research Foundation. Cheruthuruthy. India
  • Gupta, Ravi; Medgenome Labs Pvt. Ltd. Narayana Health City. India
  • Zachariah, Arun; Department of Forests and Wildlife. Sulthan Batheri. India
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 41, Jan. 24, 2018. ilus, tab, graf
Article em En | VETINDEX | ID: vti-18764
Biblioteca responsável: BR68.1
ABSTRACT

Background:

The oral cavities of snakes are replete with various types of bacterial flora. Culture-dependent studies suggest that some of the bacterial species are responsible for secondary bacterial infection associated with snakebite. A complete profile of the ophidian oral bacterial community has been unreported until now. Therefore, in the present study, we determined the complete bacterial compositions in the oral cavity of some snakes from India.

Methods:

Total DNA was isolated from oral swabs collected from three wild snake species (Indian Cobra, King Cobra and Indian Python). Next, the DNA was subjected to PCR amplification of microbial 16S rRNA gene using V3-region-specific primers. The amplicons were used for preparation of DNA libraries that were sequenced on an Illumina MiSeq platform.

Results:

The cluster-based taxonomy analysis revealed that Proteobacteria and Actinobacteria were the most predominant phyla present in the oral cavities of snakes. This result indicates that snakes show more similarities to birds than mammals as to their oral bacterial communities. Furthermore, our study reports all the unique and common bacterial species (total 147) found among the oral microbes of snakes studied, while the majority of commonly abundant species were pathogens or opportunistic pathogens to humans. A wide difference in ophidian oral bacterial flora suggests variation by individual, species and geographical region.

Conclusion:

The present study would provide a foundation for further research on snakes to recognize the potential drugs/antibiotics for the different infectious diseases.(AU)
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: VETINDEX Assunto principal: Análise de Sequência de RNA / Elapidae / Microbiota / Boca Limite: Animals País/Região como assunto: Asia Idioma: En Revista: J. Venom. Anim. Toxins incl. Trop. Dis. Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: VETINDEX Assunto principal: Análise de Sequência de RNA / Elapidae / Microbiota / Boca Limite: Animals País/Região como assunto: Asia Idioma: En Revista: J. Venom. Anim. Toxins incl. Trop. Dis. Ano de publicação: 2018 Tipo de documento: Article