Your browser doesn't support javascript.
loading
Automatic selection model to identify neurodegenerative diseases.
Sánchez-DelaCruz, Eddy; Loeza-Mejía, Cecilia-Irene; Primero-Huerta, César; Fuentes-Ramos, Mirta.
Afiliação
  • Sánchez-DelaCruz E; Artificial Intelligence Laboratory, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Veracruz, Mexico.
  • Loeza-Mejía CI; Artificial Intelligence Laboratory, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Veracruz, Mexico.
  • Primero-Huerta C; Artificial Intelligence Laboratory, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Veracruz, Mexico.
  • Fuentes-Ramos M; División de Ingeniería en Sistemas Computacionales, Tecnológico Nacional de México/Valle de Bravo, Valle de Bravo Mexico.
Digit Health ; 10: 20552076241284376, 2024.
Article em En | MEDLINE | ID: mdl-39372807
ABSTRACT

Objective:

This study evaluates machine learning algorithms' effectiveness in classifying Parkinson's disease and Huntington's disease based on biomarker data obtained non-invasively from patients and healthy controls.

Methods:

Datasets containing biomarker data (x, y, and z values of accelerometers) from sensors were collected from Parkinson's disease, Huntington's disease patients, and healthy controls. An automatic selection model method was implemented for disease classification, using a unique Mexican database of human gait biomarkers, which we consider the only one of its kind. Random forest, random subspace method, and K-star algorithms were employed, with parameters optimized through an automated model selection.

Results:

The study achieved a 0.893 precision rate for Parkinson's disease and Huntington's disease using the random subspace method. The findings underscore the potential of machine learning techniques in medical diagnosis, particularly in neurological disorders.

Conclusion:

The automatic selection model method demonstrated efficacy in classifying Parkinson's disease and Huntington's disease based on non-invasive biomarker data. This research contributes to advancing non-invasive diagnostic approaches in neurological disorders, highlighting the significance of machine learning in healthcare.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Digit Health Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Digit Health Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Estados Unidos