A promising alternative for sustainable remediation of carbendazim in aquatic environments.
Environ Sci Pollut Res Int
; 31(50): 60235-60246, 2024 Oct.
Article
em En
| MEDLINE
| ID: mdl-39370465
ABSTRACT
The treatment of carbendazim-contaminated effluents is a challenge because of its complex composition and toxicity. A promising solution lies in biodegradation and the fungus Actinomucor elegans LBM 290 shows significant potential in this regard. Thus, the aim of this study was to biodegrade MBC by A. elegans LBM 290 in a liquid medium addressing the changes in the fungal morphology and protein production. The fungus A. elegans LBM 290 efficiently remove the fungicide carbendazim, with 86.6% removal within 8 days. This degradation is a combination of biodegradation (24.54%) and adsorption (62.08%). Exposure to carbendazim negatively affected the fungus, causing a decrease in biomass and morphological changes. Proteomic analysis revealed the fungal response to carbendazim stress through increased production of Cu-Zn superoxide dismutase, an antioxidant enzyme that combats oxidative stress, and the presence of a G protein subunit, suggesting participation in stress signaling pathways. These findings contribute to understanding the strategies of A. elegans LBM 290 to cope with carbendazim exposure in aquatic environments.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poluentes Químicos da Água
/
Benzimidazóis
/
Biodegradação Ambiental
/
Carbamatos
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Assunto da revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Argentina
País de publicação:
Alemanha