Your browser doesn't support javascript.
loading
Micro Reference Electrode with an Ultrathin Ionic Path.
Zhu, Meng-Yuan; Bao, Yi-Fan; Geng, Hao-Fei; Zhao, Xiao-Jiao; Cao, Mao-Feng; Chen, Hong-Xuan; Wang, Jia-Yi; Zhang, Wei; Wang, Xiang; Ren, Bin.
Afiliação
  • Zhu MY; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Bao YF; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Geng HF; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Zhao XJ; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Cao MF; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Chen HX; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Wang JY; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Zhang W; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Wang X; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
  • Ren B; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engin
Anal Chem ; 2024 Oct 03.
Article em En | MEDLINE | ID: mdl-39360511
ABSTRACT
Reference electrode (RE) plays the core role in accurate potential control in electrochemistry. However, nanoresolved electrochemical characterization techniques still suffer from unstable potential control of pseudo-REs, because the commercial RE is too large to be used in the tiny electrochemical cell, and thus only pseudo-RE can be used. Therefore, microsized RE with a stable potential is urgently required to push the nanoresolved electrochemical measurements to a new level of accuracy and precision, but it is quite challenging to reproducibly fabricate such a micro RE until now. Here, we revisited the working mechanism of the metal-junction RE and clearly revealed the role of the ionic path between the metal wire and the borosilicate glass capillary to maintain a stable potential of RE. Based on this understanding, we developed a method to fabricate micro ultrastable-RE, where a reproducible ultrathin ionic path can form by dissolving a sandwiched sacrificial layer between the Pt wire and the capillary for the ion transfer. The potential of this new micro RE was almost the same as that of the commercial Ag/AgCl electrode, while the size is much smaller. Different from commercial REs that must be stored in the inner electrolyte, the new RE could be directly stored in air for more than one year without potential drift. Eventually, we successfully applied the micro RE in the electrochemical tip-enhanced Raman spectroscopy (EC-TERS) measurement to precisely control the potential of the working electrode, which makes it possible to compare the results from different laboratories and techniques to better understand the electrochemical interface at the nanoscale.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos