Your browser doesn't support javascript.
loading
Development of a Miniaturized 2-Joule Pulsed Plasma Source Based on Plasma Focus Technology: Applications in Extreme Condition Materials and Nanosatellite Orientation.
Soto, Leopoldo; Pavez, Cristian; Pedreros, José; Jain, Jalaj; Moreno, José; San Martín, Patricio; Castillo, Fermín; Zanelli, Daniel; Altamirano, Luis.
Afiliação
  • Soto L; Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile.
  • Pavez C; Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago 8370134, Chile.
  • Pedreros J; Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile.
  • Jain J; Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago 8370134, Chile.
  • Moreno J; Departamento de Ingeniería Eléctrica, Universidad de Chile, Santiago 8370451, Chile.
  • San Martín P; Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile.
  • Castillo F; Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile.
  • Zanelli D; Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago 8370134, Chile.
  • Altamirano L; Research Reactors and Nuclear Fuel Department, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile.
Micromachines (Basel) ; 15(9)2024 Sep 01.
Article em En | MEDLINE | ID: mdl-39337783
ABSTRACT
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements. In this paper, we present the design and construction of a compact, portable pulsed plasma source based on plasma focus technology, operating at the ~2-4 Joule energy range for versatile applications (PF-2J 120 nF capacitance, 6-9 kV charging voltage, 40 nH inductance, 2.16-4.86 J stored energy, and 10-15 kA maximum current at short circuit). The components of the device, including capacitors, spark gaps, discharge chambers, and power supplies, are transportable within hand luggage. The electrical characteristics of the discharge were thoroughly characterized using voltage and current derivative monitoring techniques. A peak current of 15 kiloamperes was achieved within 110 nanoseconds in a short-circuit configuration at a 9 kV charging voltage. Plasma dynamics were captured through optical refractive diagnostics employing a pulsed Nd-YAG laser with a 170-picosecond pulse duration. Clear evidence of the z-pinch effect was observed during discharges in a deuterium atmosphere at 4 millibars and 6 kilovolts. The measured pinch length and radius were approximately 0.8 mm and less than 100 µm, respectively. Additionally, we explore the potential applications of this compact pulsed plasma source. These include its use as a plasma shock irradiation device for analyzing materials intended for the first wall of nuclear fusion reactors, its capability in material film deposition, and its utility as an educational tool in experimental plasma physics. We also show its potential as a pulsed plasma thruster for nanosatellites, showcasing the advantages of miniaturized plasma focus technology.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça