Your browser doesn't support javascript.
loading
Carbon Fiber-Mediated Electrospinning Scaffolds Can Conduct Electricity for Repairing Defective Tendon.
Yu, Xiao; Wu, Genbin; Cai, Pengfei; Ding, Yangfan; Cui, Jie; Wu, Jinglei; Shen, Yihong; Song, Jiahui; Yuan, Zhengchao; El-Newehy, Mohamed; Abdulhameed, Meera Moydeen; Chen, Huifang; Mo, Xiumei; Sun, Binbin; Yu, Yinxian.
Afiliação
  • Yu X; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Wu G; Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
  • Cai P; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Ding Y; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Cui J; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Wu J; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Shen Y; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Song J; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Yuan Z; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • El-Newehy M; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
  • Abdulhameed MM; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
  • Chen H; College of Materials Science and Engineering and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
  • Mo X; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Sun B; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
  • Yu Y; Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
ACS Appl Mater Interfaces ; 16(39): 52104-52115, 2024 Oct 02.
Article em En | MEDLINE | ID: mdl-39288100
ABSTRACT
Partial or complete rupture of the tendon can damage the collagen structure, resulting in the disruption of the electrical signal pathway. It is a great challenge to reconstruct the original electrical signal pathway of the tendon and promote the regeneration and functional recovery of defective tendon. In this study, carbon fiber-mediated electrospinning scaffolds were fabricated by wrapping conductive, high-strength, loose single-bundle carbon fibers with nanofiber membranes. Due to the presence of nanofiber membranes, the maximum tensile force of the scaffolds was 2.4 times higher than that of carbon fibers, while providing excellent temporal and spatial prerequisites for tenocytes to adapt to electrical stimulation to accelerate proliferation and expression. The diameter of the carbon fiber monofilaments used in this study was 5.07 ± 1.20 µm, which matched the diameter of tendon collagen, allowing for quickly establishing the connection between the tendon tissue and the scaffold, and better promoting the recovery of the electrical signal pathway. In a rabbit Achilles tendon defect repair model, the carbon fiber-mediated electrospinning scaffold was almost filled with collagen fibers compared to a nonconductive polyethylene glycol terephthalate scaffold. Transcriptome sequencing revealed that fibromodulin and tenomodulin expression were upregulated, and their related proteoglycans and glycosaminoglycan binding proteins pathways were enhanced, which could regulate the TGF-ß signaling pathway and optimize the extracellular matrix assembly, thus promoting tendon repair. Therefore, the scaffold in this study makes up for the shortage of conductive scaffolds for repairing tendon defects, revealing the potential impact of conductivity on the signaling pathway of tendon repair and providing a new approach for future clinical studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alicerces Teciduais / Fibra de Carbono Limite: Animals Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alicerces Teciduais / Fibra de Carbono Limite: Animals Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos