Your browser doesn't support javascript.
loading
Stochastic image spectroscopy: a discriminative generative approach to hyperspectral image modelling and classification.
Egaña, Alvaro F; Ehrenfeld, Alejandro; Curotto, Franco; Sánchez-Pérez, Juan F; Silva, Jorge F.
Afiliação
  • Egaña AF; Advanced Laboratory for Geostatistical Supercomputing - ALGES, Advanced Mining Technology Center - AMTC, University of Chile, Santiago, Chile. aegana@alges.cl.
  • Ehrenfeld A; Department of Information Decision Group, Electrical Engineering, University of Chile, Santiago, Chile. aegana@alges.cl.
  • Curotto F; Advanced Laboratory for Geostatistical Supercomputing - ALGES, Advanced Mining Technology Center - AMTC, University of Chile, Santiago, Chile.
  • Sánchez-Pérez JF; Advanced Laboratory for Geostatistical Supercomputing - ALGES, Advanced Mining Technology Center - AMTC, University of Chile, Santiago, Chile.
  • Silva JF; Department of Applied Physics and Naval Technology, Universidad Politécnica de Cartagena, Murcia, Spain.
Sci Rep ; 14(1): 19308, 2024 Aug 20.
Article em En | MEDLINE | ID: mdl-39164343
ABSTRACT
This paper introduces a new latent variable probabilistic framework for representing spectral data of high spatial and spectral dimensionality, such as hyperspectral images. We use a generative Bayesian model to represent the image formation process and provide interpretable and efficient inference and learning methods. Surprisingly, our approach can be implemented with simple tools and does not require extensive training data, detailed pixel-by-pixel labeling, or significant computational resources. Numerous experiments with simulated data and real benchmark scenarios show encouraging image classification performance. These results validate the unique ability of our framework to discriminate complex hyperspectral images, irrespective of the presence of highly discriminative spectral signatures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Chile País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Chile País de publicação: Reino Unido