Your browser doesn't support javascript.
loading
Contact-Electro-Catalysis Through Electret Behavior to Facilitate Electron Transfer.
Li, Xinnan; Tong, Wangshu; Shi, Jing; Zhang, Xinyue; Chen, Yunfan; Liu, Xulin; Zhang, Yihe.
Afiliação
  • Li X; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Tong W; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Shi J; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Zhang X; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Chen Y; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Liu X; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Zhang Y; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
ACS Appl Mater Interfaces ; 16(32): 42293-42304, 2024 Aug 14.
Article em En | MEDLINE | ID: mdl-39102282
ABSTRACT
Contact-electro-catalysis (CEC) usually uses polymer dielectrics as its catalysts under mechanical stimulation conditions, which although has a decent catalytic dye degradation effect still warrants performance improvement. A carrier separation promotion strategy based on an internal electric field by polarization can effectively improve ferroelectric material performance in photocatalysis and piezocatalysis. Therefore, carrier separation as a necessary process of CEC also can be promoted and is largely expected to improve CEC performance theoretically. However, the carrier separation enhancement by the internal electric field strategy has not been achieved in the CEC experiment yet, because of the difficulty of building an internal electric field in an inert polymer dielectric. Herein, a polytetrafluoroethylene (PTFE) dielectric was charged through an electret process, which was believed to establish an internal electric field for CEC catalysts proved by KPFM, XPS, and triboelectric nanogenerator voltage output analysis. The fastest degradation rate of methyl orange reached over 90% at 1.5 h, while the hydroxyl free radical (•OH) yield of the PTFE electret was nearly three times that of the original PTFE. Density functional theory (DFT) calculations verified that the potential barrier of interatomic electron transfer between PTFE and H2O was reduced by 37% under the internal electric field. The electret strategy used herein to optimize the PTFE catalyst provides a base for the use of other general plastics in CEC and facilitates the production of easily prepared, easily recyclable, and inexpensive polymer dielectric catalysts that can promote large-scale pollutant degradation via CEC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos