Your browser doesn't support javascript.
loading
Oleic acid treatment of rice grains reduces the starch digestibility: Formation, binding state and fine structure of starch-lipid complexes.
Gao, Qian; Feng, Ran; Yu, Meng-Jie; Tao, Han; Zhang, Bao.
Afiliação
  • Gao Q; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Feng R; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Yu MJ; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Tao H; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China. Electronic address: hantao2017@h
  • Zhang B; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China. Electronic address: baoz@hfut.ed
Food Chem ; 457: 140191, 2024 Nov 01.
Article em En | MEDLINE | ID: mdl-38924913
ABSTRACT
Rice contains abundant starch and contributes to a rapid rise in postprandial blood glucose levels. Hence, it is crucial to directly modify rice grains for resistant starch (RS) content elevation while preserving their morphology. In this study, rice grains were treated with 6%-18% concentrations of oleic acid (OA) and 8-20 h of soaking time to promote the formation of starch-lipid complexes, thereby reducing rice digestibility. In OA-treated rice, the OA molecules exist in three binding states. OA-treated rice exhibited a significantly higher complexation index and OA content than natural rice. RS content increased from 20.50% to 32.46%. X-ray diffraction and NMR spectroscopy revealed the development of amylose-OA complexes within the rice grains and a V-crystalline structure of up to 3.62%. Raman spectroscopy and thermogravimetric analysis showed enhanced molecular ordering and structural stability of rice starch. Overall, OA treatment effectively promotes RS formation within rice grains, consequently reducing rice digestibility.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Amido / Ácido Oleico / Digestão Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Amido / Ácido Oleico / Digestão Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido