Your browser doesn't support javascript.
loading
TreeKDE: clustering multivariate data based on decision tree and using one-dimensional kernel density estimation.
Scaldelai, D; Matioli, L C; Santos, S R.
Afiliação
  • Scaldelai D; Colegiado de Matemática, Universidade Estadual do Paraná-UNESPAR, Campo Mourão, Brazil.
  • Matioli LC; Departamento de Matemática, Universidade Federal do Paraná-UFPR, Curitiba, Brazil.
  • Santos SR; Colegiado de Matemática, Universidade Estadual do Paraná-UNESPAR, Campo Mourão, Brazil.
J Appl Stat ; 51(4): 740-758, 2024.
Article em En | MEDLINE | ID: mdl-38414803
ABSTRACT
In this paper, we present an algorithm for clustering multidimensional data, which we named TreeKDE. It is based on a tree structure decision associated with the optimization of the one-dimensional kernel density estimator function constructed from the orthogonal projections of the data on the coordinate axes. Among the main features of the proposed algorithm, we highlight the automatic determination of the number of clusters and their insertion in a rectangular region. Comparative numerical experiments are presented to illustrate the performance of the proposed algorithm and the results indicate that the TreeKDE is efficient and competitive when compared to other algorithms from the literature. Features such as simplicity and efficiency make the proposed algorithm an attractive and promising research field, which can be used as a basis for its improvement, and also for the development of new clustering algorithms based on the association between decision tree and kernel density estimator.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Appl Stat Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Appl Stat Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido