Your browser doesn't support javascript.
loading
NIR-triggered bacterial cellulose-based wound dressings for multiple synergistic therapy of infected wound.
Sun, Meiyan; Li, Dongmei; Xi, Yan; Qin, Xiaotong; Liao, Yuting; Liu, Xiaozhi; Jia, Shiru; Xie, Yanyan; Zhong, Cheng.
Afiliação
  • Sun M; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
  • Li D; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
  • Xi Y; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
  • Qin X; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
  • Liao Y; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
  • Liu X; Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, Tianjin, PR China.
  • Jia S; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
  • Xie Y; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China. Electronic address: yyxie0220@tust.edu
  • Zhong C; State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China. Electronic address: czhong@tust.edu.cn
Int J Biol Macromol ; 259(Pt 1): 129033, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38176505
ABSTRACT
Skin wounds are repaired by a complex series of events and overlapping phases in which bacterial infection and insufficient angiogenesis at the wound site delay the healing process. Thus, functional wound dressings with enhanced antibacterial activity and angiogenic capacity have attracted attention. Herein, bacterial cellulose (BC)-based dressings were successfully fabricated by functionalization with a polydopamine (PDA) coating and copper sulfide nanoparticles (CuS NPs). Under 808 nm laser illumination, the BC/PDA/CuS composite membranes exhibited outstanding adjustable photothermal and photodynamic activities as well as controlled Cu2+ release, endowing the composite membranes with synergetic antibacterial activity. Specially, a bactericidal efficiency of 99.7 % and 88.0 % for Staphylococcus aureus and Escherichia coli was achieved after treatment with BC/PDA/CuS5 sample under NIR irradiation (0.8 W/cm2, 10 min), respectively. Moreover, the BC/PDA/CuS5 composite membrane could enhance the angiogenesis due to the released Cu2+. In vivo experiments revealed that the BC/PDA/CuS5 composite membrane dressing could accelerate the wound closure process of the full-thickness skin defects with S. aureus by synergistically reducing inflammation, enhancing collagen deposition, and promoting vascularization under NIR irradiation. Additionally, the BC/PDA/CuS5 composite membrane exhibited high biocompatibility and biosafety. This work offers a new strategy to prepare multifunctional BC-based dressing for clinical wound healing.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus aureus / Celulose Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus aureus / Celulose Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda