Your browser doesn't support javascript.
loading
Motifs in Natural Products as Useful Scaffolds to Obtain Novel Benzo[d]imidazole-Based Cannabinoid Type 2 (CB2) Receptor Agonists.
Cho, Analia Young Hwa; Chung, Hery; Romero-Parra, Javier; Kumar, Poulami; Allarà, Marco; Ligresti, Alessia; Gallardo-Garrido, Carlos; Pessoa-Mahana, Hernán; Faúndez, Mario; Pessoa-Mahana, Carlos David.
Afiliação
  • Cho AYH; Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile.
  • Chung H; Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile.
  • Romero-Parra J; Organic Chemistry and Physical Chemistry Department, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Olivos 1007, Santiago 7820436, Chile.
  • Kumar P; National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy.
  • Allarà M; National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy.
  • Ligresti A; National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy.
  • Gallardo-Garrido C; Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile.
  • Pessoa-Mahana H; Organic Chemistry and Physical Chemistry Department, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Olivos 1007, Santiago 7820436, Chile.
  • Faúndez M; Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile.
  • Pessoa-Mahana CD; Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article em En | MEDLINE | ID: mdl-37446093
The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Canabinoides Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Canabinoides Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça