Your browser doesn't support javascript.
loading
Norcantharidin Nanoemulsion Development, Characterization, and In Vitro Antiproliferation Effect on B16F1 Melanoma Cells.
Martínez-Razo, Gabriel; Pires, Patrícia C; Domínguez-López, María Lilia; Veiga, Francisco; Vega-López, Armando; Paiva-Santos, Ana Cláudia.
Afiliação
  • Martínez-Razo G; Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Zacatenco, Mexico City 07738, Mexico.
  • Pires PC; Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
  • Domínguez-López ML; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
  • Veiga F; Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
  • Vega-López A; Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Zacatenco, Mexico City 07738, Mexico.
  • Paiva-Santos AC; Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Article em En | MEDLINE | ID: mdl-37111258
Melanoma is a highly lethal type of cancer that has had an increase in incidence in the last decades. Nevertheless, current therapies lack effectiveness and have highly disabling side effects, which calls for new therapeutic strategies. Norcantharidin (NCTD) is an acid derivative with potential antitumor activity isolated from natural blister beetles. However, its solubility limitations restrict its use. To address this issue, we developed an oil-in-water nanoemulsion using commonly available cosmetic ingredients, which increased NCTD solubility 10-fold compared to water. The developed nanoemulsion showed a good droplet size and homogeneity, with adequate pH and viscosity for skin application. In vitro drug release studies showed a sustained release profile, ideal for prolonged therapeutic effects. Accelerated stability studies proved that the formulation was reasonably stable under stress conditions, with particle separation fingerprints, instability index, particle size, and sedimentation velocity analyses being conducted. To assess the therapeutic potential of the developed formulation, in vitro studies were conducted on melanoma B16F1 cells; results showed an IC50 of 1.026 +/- 0.370 mg/kg, and the cells' metabolic activity decreased after exposure to the NCTD nanoemulsion. Hence, a new "easy-to-make" nanoformulation with therapeutic potential on melanoma cells was developed, as a possible adjuvant for future melanoma treatment.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmaceuticals (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmaceuticals (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México País de publicação: Suíça