Your browser doesn't support javascript.
loading
Biomechanical influence of narrow-diameter implants placed at the crestal and subcrestal level in the maxillary anterior region. A 3D finite element analysis.
Cruz, Ronaldo S; Fernandes E Oliveira, Hiskell Francine; Lemos, Cleidiel Aparecido Araújo; de Souza Batista, Victor Eduardo; Capalbo da Silva, Rodrigo; Verri, Fellippo R.
Afiliação
  • Cruz RS; Department of Dental Materials and Prosthodontics, Araçatuba Dental School (UNESP), Univ Estadual Paulista, Araçatuba, Brazil.
  • Fernandes E Oliveira HF; Department of Dental Materials and Prosthodontics, Araçatuba Dental School (UNESP), Univ Estadual Paulista, Araçatuba, Brazil.
  • Lemos CAA; Department of Dentistry (Division of Prosthodontics), Federal University of Juiz de Fora (UFJF)-Campus Governador Valadares, Governador Valadares, Minas Gerais, Brazil.
  • de Souza Batista VE; Department Prosthodontics, Presidente Prudente Dental School, The University of Western São Paulo (UNOESTE), Presidente Prudente, Brazil.
  • Capalbo da Silva R; Department of Dental Materials and Prosthodontics, Araçatuba Dental School (UNESP), Univ Estadual Paulista, Araçatuba, Brazil.
  • Verri FR; Department of Dental Materials and Prosthodontics, Araçatuba Dental School (UNESP), Univ Estadual Paulista, Araçatuba, Brazil.
J Prosthodont ; 33(2): 180-187, 2024 Feb.
Article em En | MEDLINE | ID: mdl-36799260
PURPOSE: To evaluate the tendency of movement, stress distribution, and microstrain of single-unit crowns in simulated cortical and trabecular bone, implants, and prosthetic components of narrow-diameter implants with different lengths placed at the crestal and subcrestal levels in the maxillary anterior region using 3D finite element analysis (FEA). MATERIALS AND METHODS: Six 3D models were simulated using Invesalius 3.0, Rhinoceros 4.0, and SolidWorks software. Each model simulated the right anterior maxillary region including a Morse taper implant of Ø2.9 mm with different lengths (7, 10, and 13 mm) placed at the crestal and subcrestal level and supporting a cement-retained monolithic single crown in the area of tooth 12. The FEA was performed using ANSYS 19.2. The simulated applied force was 178 N at 0°, 30°, and 60°. The results were analyzed using maps of displacement, von Mises (vM) stress, maximum principal stress, and microstrain. RESULTS: Models with implants at the subcrestal level showed greater displacement. vM stress increased in the implant and prosthetic components when implants were placed at the subcrestal level compared with the crestal level; the length of the implants had a low influence on the stress distribution. Higher stress and strain concentrations were observed in the cortical bone of the subcrestal placement, independent of implant length. Non-axial loading influenced the increased stress and strain in all the evaluated structures. CONCLUSIONS: Narrow-diameter implants positioned at the crestal level showed a more favorable biomechanical behavior for simulated cortical bone, implants, and prosthetic components. Implant length had a smaller influence on stress or strain distribution than the other variables.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Dentários Tipo de estudo: Prognostic_studies Idioma: En Revista: J Prosthodont Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Dentários Tipo de estudo: Prognostic_studies Idioma: En Revista: J Prosthodont Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos