Your browser doesn't support javascript.
loading
Pharmacophore Mapping Combined with dbCICA Reveal New Structural Features for the Development of Novel Ligands Targeting α4ß2 and α7 Nicotinic Acetylcholine Receptors.
Batista, Victor S; Gonçalves, Adriano Marques; Nascimento-Júnior, Nailton M.
Afiliação
  • Batista VS; Laboratory of Medicinal Chemistry, Organic Synthesis and Molecular Modeling (LaQMedSOMM), Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil.
  • Gonçalves AM; Laboratory of Medicinal Chemistry, Organic Synthesis and Molecular Modeling (LaQMedSOMM), Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil.
  • Nascimento-Júnior NM; Department of Biological and Health Sciences, University of Araraquara (Uniara), Rua Carlos Gomes, 1217, Centro, Araraquara 14801-340, SP, Brazil.
Molecules ; 27(23)2022 Nov 25.
Article em En | MEDLINE | ID: mdl-36500328
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4ß2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer's disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4ß2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4ß2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Nicotínicos / Receptor Nicotínico de Acetilcolina alfa7 Tipo de estudo: Prognostic_studies Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Nicotínicos / Receptor Nicotínico de Acetilcolina alfa7 Tipo de estudo: Prognostic_studies Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça