Your browser doesn't support javascript.
loading
Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model.
García, Graciela; Gutiérrez, Verónica; Ríos, Néstor.
Afiliação
  • García G; Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Montevideo, Uruguay.
  • Gutiérrez V; Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Montevideo, Uruguay.
  • Ríos N; Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Montevideo, Uruguay.
Front Genet ; 13: 903683, 2022.
Article em En | MEDLINE | ID: mdl-35795213
The term Annual killifish describes a short-lived and amazing group of vertebrates inhabiting temporary ponds exposed to an extremely variable environment during its short lifespan in South America and Africa, leading to the death of the entire adult population during the dry season. Austrolebias is a specious genus of the family Rivulidae, with ∼58 currently recognized species, extensively distributed in the temperate Neotropical region. Herein, we reviewed different aspects of the evolutionary biology with emphasis on the genome dynamic linked to the burst speciation process in this genus. Austrolebias constitutes an excellent model to study the genomic evolutionary processes underlying speciation events, since all the species of this genus analyzed so far share an unusually large genome size, with an average DNA content of 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). The drastic nuclear DNA-increasing would be associated with a considerable proportion of transposable elements (TEs) found in the Austrolebias genomes. The genomic proportion of the moderately repetitive DNA in the A. charrua genome represents approximately twice (45%) the amount of the repetitive components of the highly related sympatric and syntopic rivulinae taxon Cynopoecilus melanotaenia (25%), as well as from other rivulids and actinopterygian fish. These events could explain the great genome instability, the high genetic diversity, chromosome variability, as well as the morphological diversity in species of Austrolebias. Thus, species of this genus represent new model systems linking different evolutionary processes: drastic genome increase, massive TEs genomic representation, high chromosome instability, occurrence of natural hybridization between sister species, and burst speciation events.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Genet Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Uruguai País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Genet Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Uruguai País de publicação: Suíça