Your browser doesn't support javascript.
loading
BIGDML-Towards accurate quantum machine learning force fields for materials.
Sauceda, Huziel E; Gálvez-González, Luis E; Chmiela, Stefan; Paz-Borbón, Lauro Oliver; Müller, Klaus-Robert; Tkatchenko, Alexandre.
Afiliação
  • Sauceda HE; Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico. huziel.sauceda@fisica.unam.mx.
  • Gálvez-González LE; Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany. huziel.sauceda@fisica.unam.mx.
  • Chmiela S; BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587, Berlin, Germany. huziel.sauceda@fisica.unam.mx.
  • Paz-Borbón LO; Programa de Doctorado en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de Sonora, Blvd. Luis Encinas & Rosales, Hermosillo, C.P., 83000, Mexico.
  • Müller KR; Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.
  • Tkatchenko A; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
Nat Commun ; 13(1): 3733, 2022 Jun 29.
Article em En | MEDLINE | ID: mdl-35768400
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene-graphene dynamics induced by nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido