Your browser doesn't support javascript.
loading
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots.
Martin Lanzoni, Evandro; Covre da Silva, Saimon F; Knopper, Matthijn Floris; Garcia, Ailton J; Costa, Carlos Alberto Rodrigues; Deneke, Christoph.
Afiliação
  • Martin Lanzoni E; São Paulo State University (UNESP), Institute of Science and Technology, 18087-180 Sorocaba, Brazil.
  • Covre da Silva SF; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil.
  • Knopper MF; University of Luxembourg, Physics and Materials Science Research Unit, 1511 Luxembourg, Luxembourg.
  • Garcia AJ; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil.
  • Costa CAR; Universidade Federal de Viçosa (UFV), Departamento de Física, 36570-000 Viçosa, Brasil.
  • Deneke C; Eindhoven University of Technology (TU/e), Department of Applied Physics, 5600 Eindhoven,The Netherland.
Nanotechnology ; 33(16)2022 Jan 24.
Article em En | MEDLINE | ID: mdl-34983039
Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Usingk·pcalculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating thatk·pcalculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido