Your browser doesn't support javascript.
loading
The Nanostructure of Water-in-Salt Electrolytes Revisited: Effect of the Anion Size.
Horwitz, Gabriela; Härk, Eneli; Steinberg, Paula Y; Cavalcanti, Leide P; Risse, Sebastian; Corti, Horacio R.
Afiliação
  • Horwitz G; Departamento de Física de la Materia Condensada and Instituto de Nanociencia y Nanotecnología (INN-CONICET), Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650, San Martín, Buenos Aires, Argentina.
  • Härk E; Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  • Steinberg PY; Gerencia Química, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650, San Martín, Buenos Aires, Argentina.
  • Cavalcanti LP; Rutherford Appleton Laboratory, ISIS Neutron and Muon Source, OX110QX Didcot, United Kingdom.
  • Risse S; Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  • Corti HR; Departamento de Física de la Materia Condensada and Instituto de Nanociencia y Nanotecnología (INN-CONICET), Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650, San Martín, Buenos Aires, Argentina.
ACS Nano ; 15(7): 11564-11572, 2021 Jul 27.
Article em En | MEDLINE | ID: mdl-34255484
The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns. Variations with the concentration of a correlation peak, rather temperature-independent, in a Q range around 3.5-5 nm-1 indicate that these electrolytes are composed of nanometric water-rich channels percolating a 3D dispersing anion-rich network, with differences between Tf and TFSI anions related to their distinct volumes and interactions. Furthermore, a common trend was found for both systems' morphology above a salt volume fraction of ∼0.5. These results imply that the determining factor in the formation of the nanostructure is the salt volume fraction (related to the anion size), rather than its molality. These findings may represent a paradigm shift for designing WiS electrolytes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos