Your browser doesn't support javascript.
loading
A simple and effective 1D-element discrete-based method for computational bone remodeling.
Quexada-Rodríguez, Diego; Márquez-Flórez, Kalenia; Cerrolaza, Miguel; Duque-Daza, Carlos; Trabelsi, Olfa; Velasco, M A; Ramtani, Salah; Ho-Ba-Tho, Marie Christine; Garzón-Alvarado, Diego.
Afiliação
  • Quexada-Rodríguez D; Universidad Nacional de Colombia, Bogotá, Colombia.
  • Márquez-Flórez K; Universidad Nacional de Colombia, Bogotá, Colombia.
  • Cerrolaza M; Aix-Marseille Univ, CNRS, ISM, Marseille, France.
  • Duque-Daza C; Universitat Internacional de Catalunya, Barcelona, Spain.
  • Trabelsi O; Universitat Internacional de Valencia, Valencia, Spain.
  • Velasco MA; Universidad Nacional de Colombia, Bogotá, Colombia.
  • Ramtani S; Université de Technologie de Compiégne, Compiégne, France.
  • Ho-Ba-Tho MC; Universidad Nacional de Colombia, Bogotá, Colombia.
  • Garzón-Alvarado D; Université Sorbonne Paris Nord, Paris, France.
Comput Methods Biomech Biomed Engin ; 25(2): 176-192, 2022 Feb.
Article em En | MEDLINE | ID: mdl-34190673
In-silico models applied to bone remodeling are widely used to investigate bone mechanics, bone diseases, bone-implant interactions, and also the effect of treatments of bone pathologies. This article proposes a new methodology to solve the bone remodeling problem using one-dimensional (1D) elements to discretize trabecular structures more efficiently for 2D and 3D domains. An Euler integration scheme is coupled with the momentum equations to obtain the evolution of material density at each step. For the simulations, the equations were solved by using the finite element method, and two benchmark tests were solved varying mesh parameters. Proximal femur and calcaneus bone were selected as study cases given the vast research available on the topology of these bones, and compared with the anatomical features of trabecular bone reported in the literature. The presented methodology has proven to be efficient in optimizing topologies of lattice structures; It can predict the trend of formation patterns of the main trabecular groups from two different cancellous bones (femur and calcaneus) using domains set up by discrete elements as a starting point. Preliminary results confirm that the proposed approach is suitable and useful in bone remodeling problems leading to a considerable computational cost reduction. Characteristics similar to those encountered in topological optimization algorithms were identified in the benchmark tests as well, showing the viability of the proposed approach in other applications such as bio-inspired design.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Remodelação Óssea / Fêmur Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Remodelação Óssea / Fêmur Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido