Your browser doesn't support javascript.
loading
Reactivity of CuIN4 Flattened Complexes: Interplay between Coordination Geometry and Ligand Flexibility.
Llanos, Leonel; Vera, Cristian; Vega, Andrés; Aravena, Daniel; Lemus, Luis.
Afiliação
  • Llanos L; Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile.
  • Vera C; Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile.
  • Vega A; Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
  • Aravena D; Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA, Santiago, Chile.
  • Lemus L; Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile.
Inorg Chem ; 59(20): 15061-15073, 2020 Oct 19.
Article em En | MEDLINE | ID: mdl-33021785
The relation between redox activity and coordination geometry in CuIN4 complexes indicates that more flattened structures tend to be more reactive. Such a preorganization of the ligand confers to the complex geometries closer to a transition state, which has been termed the "entatic" state in metalloproteins, more recently extending this concept for copper complexes. However, many aspects of the redox chemistry of CuI complexes cannot be explained only by flattening. For instance, the role of ligand flexibility in this context is an open debate nowadays. To analyze this point, we studied oxidation properties of a series of five monometallic CuI Schiff-base complexes, [CuI(Ln)]+, which span a range of geometries from a distorted square planar (n = 3) to a distorted tetrahedron (n = 6, 7). This stepped control of the structure around the CuI atom allows us to explore the effect of the flattening distortion on both the electronic and redox properties through the series. Experimental studies were complemented by a theoretical analysis based on density functional theory calculations. As expected, oxidation was favored in the flattened structures, spanning a broad potential window of 370 mV for the complete series. This orderly behavior was tested in the reductive dehalogenation reaction of tetrachloroethane (TCE). Kinetic studies show that CuI oxidation by TCE is faster as the flattening distortion is higher and the oxidation potentials of the metal are lower. However, the most reactive complex was not the more planar, contradicting the trend expected from oxidation potentials. The origin of this irregularity is related to ligand flexibility and its connection with the atom/electron transfer reaction path, highlighting the need to consider effects beyond flattening distortion to better understand the reactivity of this important class of complexes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Chile País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Chile País de publicação: Estados Unidos