Your browser doesn't support javascript.
loading
Controlling a complex system near its critical point via temporal correlations.
Chialvo, Dante R; Cannas, Sergio A; Grigera, Tomás S; Martin, Daniel A; Plenz, Dietmar.
Afiliação
  • Chialvo DR; Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina. dchialvo@gmail.com.
  • Cannas SA; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina. dchialvo@gmail.com.
  • Grigera TS; Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
  • Martin DA; Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB-CONICET), Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.
  • Plenz D; Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
Sci Rep ; 10(1): 12145, 2020 07 22.
Article em En | MEDLINE | ID: mdl-32699316
Many complex systems exhibit large fluctuations both across space and over time. These fluctuations have often been linked to the presence of some kind of critical phenomena, where it is well known that the emerging correlation functions in space and time are closely related to each other. Here we test whether the time correlation properties allow systems exhibiting a phase transition to self-tune to their critical point. We describe results in three models: the 2D Ising ferromagnetic model, the 3D Vicsek flocking model and a small-world neuronal network model. We demonstrate that feedback from the autocorrelation function of the order parameter fluctuations shifts the system towards its critical point. Our results rely on universal properties of critical systems and are expected to be relevant to a variety of other settings.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Teóricos Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Argentina País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Teóricos Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Argentina País de publicação: Reino Unido