Your browser doesn't support javascript.
loading
Predicting re-emergence times of dengue epidemics at low reproductive numbers: DENV1 in Rio de Janeiro, 1986-1990.
Subramanian, Rahul; Romeo-Aznar, Victoria; Ionides, Edward; Codeço, Claudia T; Pascual, Mercedes.
Afiliação
  • Subramanian R; Division of Biological Sciences, University of Chicago, Chicago, IL, USA.
  • Romeo-Aznar V; Department of Ecology and Evolution, and, University of Chicago, Chicago, IL, USA.
  • Ionides E; Manseuto Institute for Urban Innovation, University of Chicago, Chicago, IL, USA.
  • Codeço CT; Department of Statistics, University of Michigan, Ann Arbor, MI, USA.
  • Pascual M; Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
J R Soc Interface ; 17(167): 20200273, 2020 06.
Article em En | MEDLINE | ID: mdl-32574544
Predicting arbovirus re-emergence remains challenging in regions with limited off-season transmission and intermittent epidemics. Current mathematical models treat the depletion and replenishment of susceptible (non-immune) hosts as the principal drivers of re-emergence, based on established understanding of highly transmissible childhood diseases with frequent epidemics. We extend an analytical approach to determine the number of 'skip' years preceding re-emergence for diseases with continuous seasonal transmission, population growth and under-reporting. Re-emergence times are shown to be highly sensitive to small changes in low R0 (secondary cases produced from a primary infection in a fully susceptible population). We then fit a stochastic Susceptible-Infected-Recovered (SIR) model to observed case data for the emergence of dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model substantially over-estimates observed re-emergence times either in terms of skips or outbreak probability under forward simulation. The inability of susceptible depletion and replenishment to explain re-emergence under 'well-mixed' conditions at a city-wide scale demonstrates a key limitation of SIR aggregated models, including those applied to other arboviruses. The predictive uncertainty and high skip sensitivity to epidemiological parameters suggest a need to investigate the relevant spatial scales of susceptible depletion and the scaling of microscale transmission dynamics to formulate simpler models that apply at coarse resolutions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dengue / Epidemias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: J R Soc Interface Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dengue / Epidemias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: J R Soc Interface Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido