Your browser doesn't support javascript.
loading
Nitrogen-Doped Carbon Dots Induced Enhancement in CO2 Sensing Response From ZnO-Porous Silicon Hybrid Structure.
Ramos-Ramón, Jesús A; Bogireddy, Naveen K R; Giles Vieyra, Jorge Arturo; Karthik, Tangirala V K; Agarwal, Vivechana.
Afiliação
  • Ramos-Ramón JA; Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
  • Bogireddy NKR; Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
  • Giles Vieyra JA; Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
  • Karthik TVK; Departamento de Metal-Mecánica, Instituto Tecnológico de Zacatepec, Instituto Nacional de México, Zacatepec de Hidalgo, Mexico.
  • Agarwal V; Ingeniería Industrial, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico.
Front Chem ; 8: 291, 2020.
Article em En | MEDLINE | ID: mdl-32432075
In this study, we report a simple method for the fabrication of carbon dots sensitized zinc oxide-porous silicon (ZnO-pSi) hybrid structures for carbon dioxide (CO2) sensing. A micro-/nanostructured layer of ZnO is formed over electrochemically prepared pSi substrates using a simple chemical precipitation method. The hybrid structure was structurally and optically characterized using scanning electron microscopy, X-ray diffraction, fluorescence, and cathodoluminescence after the incorporation of hydrothermally prepared nitrogen-doped carbon dots (NCDs) by drop casting. With respect to the control sample, although all the devices show an enhancement in the sensing response in the presence of NCDs, the optimal concentration shows an increase of ~37% at an operating temperature of 200°C and a response time <30 s. The increment in the CO2-sensing response, upon the addition of NCDs, is attributed to an increase in CO2-oxygen species reactions on the ZnO surface due to an increment in the free electron density at the metal-semiconductor-type junction of NCD clusters and ZnO micro-/nanorods. A significant increase in the sensing response (~24%) at low operating temperature (100°C) opens the possibility of developing very large-scale integrable (VLSI), low operational cost gas sensors with easy fabrication methods and low-cost materials.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: México País de publicação: Suíça