Your browser doesn't support javascript.
loading
Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy.
Li, Jianping; Li, Man; Tian, Lifeng; Qiu, Yue; Yu, Qianwen; Wang, Xuhui; Guo, Rong; He, Qin.
Afiliação
  • Li J; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • Li M; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • Tian L; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • Qiu Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • Yu Q; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • Wang X; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • Guo R; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
  • He Q; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR
Int J Pharm ; 578: 119122, 2020 Mar 30.
Article em En | MEDLINE | ID: mdl-32035259
A facile approach was developed to synthesize an innovative hyaluronic acid-modified carbon dot-doxorubicin nanoparticles drug delivery platform. CD44 targeted HA-modified carbon dots (HA-CDs) were synthesized as carrier by one-step hydrothermal treatment within one hour with citric acid and branch-PEI as core carbon source. HA not only functioned as carbon dot component but also as hydrophilic group and targeting ligand of this system. The as-prepared HA-CDs were then loaded with doxorubicin (HA-CD@p-CBA-DOX) via an acid-cleavable bond, which released drug in a pH-responsive manner. In in vitro experiments, HA-CD@p-CBA-DOX displayed good hemocompatibility and serum stability, while exhibited high cytotoxicity on 4T1 cells. The confocal laser scanning microscopy and flow cytometry results demonstrated that DOX-loaded nanoparticles were internalized by 4T1 cells via HA-mediated CD44-targeting effect. The enhanced in vivo tumor accumulation of HA-CD@p-CBA-DOX was testified by live imaging. Compared with free DOX, superior in vivo anti-tumor efficacy of HA-CD@p-CBA-DOX was observed in both heterotopic and orthotopic 4T1 cell tumor models. Furthermore, blood hematology and blood biochemistry analysis demonstrated that HA-CD@p-CBA-DOX did not induce noticeable toxicity, which further confirmed the good biocompatibility of HA-CD@p-CBA-DOX. The formulated HA-CD@p-CBA-DOX provides an alternative strategy for targeted breast cancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Carbono / Doxorrubicina / Receptores de Hialuronatos / Nanopartículas / Ácido Hialurônico Limite: Animals Idioma: En Revista: Int J Pharm Ano de publicação: 2020 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Carbono / Doxorrubicina / Receptores de Hialuronatos / Nanopartículas / Ácido Hialurônico Limite: Animals Idioma: En Revista: Int J Pharm Ano de publicação: 2020 Tipo de documento: Article País de publicação: Holanda