Your browser doesn't support javascript.
loading
Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
Santos, Karina B; Guedes, Isabella A; Karl, Ana L M; Dardenne, Laurent E.
Afiliação
  • Santos KB; National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil.
  • Guedes IA; National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil.
  • Karl ALM; National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil.
  • Dardenne LE; National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil.
J Chem Inf Model ; 60(2): 667-683, 2020 02 24.
Article em En | MEDLINE | ID: mdl-31922754
Protein-peptide interactions play a crucial role in many cellular and biological functions, which justify the increasing interest in the development of peptide-based drugs. However, predicting experimental binding modes and affinities in protein-peptide docking remains a great challenge for most docking programs due to some particularities of this class of ligands, such as the high degree of flexibility. In this paper, we present the performance of the DockThor program on the LEADS-PEP data set, a benchmarking set composed of 53 diverse protein-peptide complexes with peptides ranging from 3 to 12 residues and with up to 51 rotatable bonds. The DockThor performance for pose prediction on redocking studies was compared with some state-of-the-art docking programs that were also evaluated on the LEADS-PEP data set, AutoDock, AutoDock Vina, Surflex, GOLD, Glide, rDock, and DINC, as well as with the task-specific docking protocol HPepDock. Our results indicate that DockThor could dock 40% of the cases with an overall backbone RMSD below 2.5 Å when the top-scored docking pose was considered, exhibiting similar results to Glide and outperforming other protein-ligand docking programs, whereas rDock and HPepDock achieved superior results. Assessing the docking poses closest to the crystal structure (i.e., best-RMSD pose), DockThor achieved a success rate of 60% in pose prediction. Due to the great overall performance of handling peptidic compounds, the DockThor program can be considered as suitable for docking highly flexible and challenging ligands, with up to 40 rotatable bonds. DockThor is freely available as a virtual screening Web server at https://www.dockthor.lncc.br/ .
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Proteínas / Simulação de Acoplamento Molecular Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Proteínas / Simulação de Acoplamento Molecular Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos