Your browser doesn't support javascript.
loading
Benchmarking machine learning models for late-onset alzheimer's disease prediction from genomic data.
De Velasco Oriol, Javier; Vallejo, Edgar E; Estrada, Karol; Taméz Peña, José Gerardo; Disease Neuroimaging Initiative, The Alzheimer's.
Afiliação
  • De Velasco Oriol J; Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710, Mexico. javierdevelascooriol@gmail.com.
  • Vallejo EE; Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710, Mexico.
  • Estrada K; Graduate Professional Studies, Brandeis University, Waltham, 02453, MA, USA.
  • Taméz Peña JG; Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710, Mexico.
  • Disease Neuroimaging Initiative TA; Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710, Mexico.
BMC Bioinformatics ; 20(1): 709, 2019 Dec 16.
Article em En | MEDLINE | ID: mdl-31842725
BACKGROUND: Late-Onset Alzheimer's Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. RESULTS: We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. CONCLUSIONS: Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Male Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Male Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido