Your browser doesn't support javascript.
loading
RoCoLe: A robusta coffee leaf images dataset for evaluation of machine learning based methods in plant diseases recognition.
Parraga-Alava, Jorge; Cusme, Kevin; Loor, Angélica; Santander, Esneider.
Afiliação
  • Parraga-Alava J; Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta, Ecuador.
  • Cusme K; Universidad de Santiago de Chile, Santiago, Chile.
  • Loor A; Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta, Ecuador.
  • Santander E; Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta, Ecuador.
Data Brief ; 25: 104414, 2019 Aug.
Article em En | MEDLINE | ID: mdl-31516934
In this article we introduce a robusta coffee leaf images dataset called RoCoLe. The dataset contains 1560 leaf images with visible red mites and spots (denoting coffee leaf rust presence) for infection cases and images without such structures for healthy cases. In addition, the data set includes annotations regarding objects (leaves), state (healthy and unhealthy) and the severity of disease (leaf area with spots). Images were all obtained in real-world conditions in the same coffee plants field using a smartphone camera. RoCoLe data set facilitates the evaluation of the performance of machine learning algorithms used in image segmentation and classification problems related to plant diseases recognition. The current dataset is freely and publicly available at https://doi.org/10.17632/c5yvn32dzg.2.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Data Brief Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Equador País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Data Brief Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Equador País de publicação: Holanda