Your browser doesn't support javascript.
loading
In situ growth of manganese oxide nanosheets over titanium dioxide nanofibers and their performance as active material for supercapacitor.
Da Silva, Elisangela P; Rubira, Adley F; Ferreira, Odair P; Silva, Rafael; Muniz, Edvani C.
Afiliação
  • Da Silva EP; Department of Chemistry, State University of Maringa, Avenida Colombo 5790, CEP: 87020-900 Maringá, Paraná, Brazil.
  • Rubira AF; Department of Chemistry, State University of Maringa, Avenida Colombo 5790, CEP: 87020-900 Maringá, Paraná, Brazil.
  • Ferreira OP; Department of Physics, Federal University of Ceará, Av. das Universidades, 2853, CEP 60020-181 Fortaleza, CE, Brazil.
  • Silva R; Department of Chemistry, State University of Maringa, Avenida Colombo 5790, CEP: 87020-900 Maringá, Paraná, Brazil. Electronic address: rsilva2@uem.br.
  • Muniz EC; Department of Chemistry, State University of Maringa, Avenida Colombo 5790, CEP: 87020-900 Maringá, Paraná, Brazil; Material Science and Engineering, Federal University of Technology - Parana, CEP 86036-370 Londrina, PR, Brazil; Department of Chemistry, Federal University of Piauí, Campus Universitá
J Colloid Interface Sci ; 555: 373-382, 2019 Nov 01.
Article em En | MEDLINE | ID: mdl-31398565
In recent years, electrochemical energy devices, i.e. batteries, fuel cells, solar cells, and supercapacitors, have attracted considerable attention of scientific community. The architecture of active materials plays a crucial role for improving supercapacitors performance. Herein, titanium dioxide (TiO2) nanofibers (1D) have been synthesized by electrospinning process and used as a backbone to manganese dioxide (MnO2) nanosheets (2D) growth through hydrothermal method. This strategy allows the obtaining of 1D/2D heterostructure architecture, which has demonstrated superior electrochemical performance in relation to pristine MnO2. The highest electrochemical performance is due to the synergic effect between the metal oxides, where TiO2 nanofibers provide electrochemical stability for active MnO2 phase. Thus, the designed TiO2@MnO2 structure can reach maximum specific capacitance of 525 F·g-1 at a current density of 0.25 A·g-1, and it demonstrates an excellent stability by retaining 81% of the initial capacitance with coulombic efficiency of 91%. Therefore, the novel architecture of TiO2@MnO2 based on nanofibers and nanosheets exhibits superior electrochemical properties to be used in supercapacitor applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos