Your browser doesn't support javascript.
loading
Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis.
Silveira, Marina A; Zampieri, Thais T; Furigo, Isadora C; Abdulkader, Fernando; Donato, Jose; Frazão, Renata.
Afiliação
  • Silveira MA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
  • Zampieri TT; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
  • Furigo IC; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
  • Abdulkader F; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
  • Donato J; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil. Electronic address: jdonato@icb.usp.br.
  • Frazão R; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil. Electronic address: rfrazao@usp.br.
Brain Res ; 1714: 210-217, 2019 07 01.
Article em En | MEDLINE | ID: mdl-30851245
Growth hormone (GH) and prolactin (PRL) are known as pleiotropic hormones. Accordingly, the distribution of their receptors comprises several organs and tissues, including the central nervous system. The appropriate secretion of both hormones is essential for sexual maturation and maintenance of reproductive functions, while defects in their secretion affect puberty onset and can cause infertility. Conversely, GH therapy at a prepubertal age may accelerate puberty. On the other hand, hyperprolactinemia is a frequent cause of infertility. While the action of PRL in some central components of the Hypothalamic-Pituitary-Gonadal (HPG) axis, such as the kisspeptin neurons, has been well documented, the possible effects of GH in the hypothalamus are still elusive. Thus, the present study was designed to investigate whether somatomammotropin hormones are able to modulate the activity of critical neuronal components of the HPG axis, including kisspeptin neurons and cells of the ventral premammillary nucleus (PMv). Our results revealed that GH effects in kisspeptin neurons of the anteroventral periventricular and rostral periventricular nuclei or in PMv neurons relies predominantly on the recruitment of the signal transducer and activator of transcription 5 (STAT5) rather than through acute changes in resting membrane potential. Importantly, kisspeptin neurons located at the arcuate nucleus were not directly responsive to GH. Additionally, our findings further identified PMv neurons as potential targets of PRL, since PRL induces the phosphorylation of STAT5 and depolarizes PMv neurons. Combined, our data provide evidence that GH and PRL may affect the HPG axis via specific hypothalamic neurons.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prolactina / Maturidade Sexual / Hormônio do Crescimento Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Brain Res Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prolactina / Maturidade Sexual / Hormônio do Crescimento Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Brain Res Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda