Your browser doesn't support javascript.
loading
Food categorizations among low-income women living in three different urban contexts: The pile sorting method.
Sato, Priscila de Morais; Lourenço, Bárbara Hatzlhoffer; Silva, João Gabriel Sanchez Tavares da; Scagliusi, Fernanda Baeza.
Afiliação
  • Sato PM; Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo/SP, CEP 01255-000, São Paulo/SP, Brazil. Electronic address: pri.sato@gmail.com.
  • Lourenço BH; Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo/SP, CEP 01255-000, São Paulo/SP, Brazil. Electronic address: barbaralourenco@usp.br.
  • Silva JGSTD; Department of Health, Clinics and Institutions, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos/SP, CEP 11015-020, Santos/SP, Brazil. Electronic address: joaogsanchez@gmail.com.
  • Scagliusi FB; Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo/SP, CEP 01255-000, São Paulo/SP, Brazil. Electronic address: fernanda.scagliusi@gmail.com.
Appetite ; 136: 173-183, 2019 05 01.
Article em En | MEDLINE | ID: mdl-30711486
Transformations in eating practices are reflected in the multiplicity of competing food-related discourses. These discourses contribute to different food categorizations among individuals. Scientists have long argued that food categorizations may help understanding cultural systems of health beliefs. However, not enough work has been conducted to improve the understanding of the dimensions of food categorizations and their interface with food choices, tastes, and culturally defined food systems. This study aims at describing and interpreting how low-income women living in three urban settings in Santos, Brazil, classify and give meaning to foods. We used the pile sorting method to investigate categorizations created by 90 women, following 6 steps: (1) creating units of analysis, (2) sorting the units of analysis into piles, (3) running multidimensional scaling analysis, (4) running cluster analyses on the multidimensional scaling coordinates, (5) labelling the clusters, and (6) analyzing consensus among the participants. The final solution to food categorizations comprised six clusters, namely: home meals, convenience foods, special meals, fish, breads and cereals, and hot dogs. Additionally, we observed four rationales for food categorization: frequency of consumption, degree of healthfulness, personal taste, and meals in which the food was usually part of. These categories highlight the importance of considering personal taste and the type of meal that the food is culturally consumed in, to propose meaningful interventions and appropriate education tools, towards promoting healthy eating practices, especially among vulnerable populations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pobreza / População Urbana / Conhecimentos, Atitudes e Prática em Saúde / Comportamento Alimentar / Preferências Alimentares Tipo de estudo: Prognostic_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Limite: Adolescent / Adult / Female / Humans / Middle aged País/Região como assunto: America do sul / Brasil Idioma: En Revista: Appetite Ano de publicação: 2019 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pobreza / População Urbana / Conhecimentos, Atitudes e Prática em Saúde / Comportamento Alimentar / Preferências Alimentares Tipo de estudo: Prognostic_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Limite: Adolescent / Adult / Female / Humans / Middle aged País/Região como assunto: America do sul / Brasil Idioma: En Revista: Appetite Ano de publicação: 2019 Tipo de documento: Article País de publicação: Reino Unido