Your browser doesn't support javascript.
loading
Universality of jamming of nonspherical particles.
Brito, Carolina; Ikeda, Harukuni; Urbani, Pierfrancesco; Wyart, Matthieu; Zamponi, Francesco.
Afiliação
  • Brito C; Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
  • Ikeda H; Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France; harukuni.ikeda@lpt.ens.fr.
  • Urbani P; Institut de Physique Théorique, Université Paris Saclay, CNRS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif-sur-Yvette, France.
  • Wyart M; Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Zamponi F; Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France.
Proc Natl Acad Sci U S A ; 115(46): 11736-11741, 2018 11 13.
Article em En | MEDLINE | ID: mdl-30381457
Amorphous packings of nonspherical particles such as ellipsoids and spherocylinders are known to be hypostatic: The number of mechanical contacts between particles is smaller than the number of degrees of freedom, thus violating Maxwell's mechanical stability criterion. In this work, we propose a general theory of hypostatic amorphous packings and the associated jamming transition. First, we show that many systems fall into a same universality class. As an example, we explicitly map ellipsoids into a system of "breathing" particles. We show by using a marginal stability argument that in both cases jammed packings are hypostatic and that the critical exponents related to the contact number and the vibrational density of states are the same. Furthermore, we introduce a generalized perceptron model which can be solved analytically by the replica method. The analytical solution predicts critical exponents in the same hypostatic jamming universality class. Our analysis further reveals that the force and gap distributions of hypostatic jamming do not show power-law behavior, in marked contrast to the isostatic jamming of spherical particles. Finally, we confirm our theoretical predictions by numerical simulations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos