Your browser doesn't support javascript.
loading
Design and Modeling of a MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications.
Peña-García, Néstor N; Aguilera-Cortés, Luz A; González-Palacios, Max A; Raskin, Jean-Pierre; Herrera-May, Agustín L.
Afiliação
  • Peña-García NN; Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8 km, Palo Blanco, Salamanca, Guanajuato 36885, Mexico. nnpg10@hotmail.com.
  • Aguilera-Cortés LA; Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8 km, Palo Blanco, Salamanca, Guanajuato 36885, Mexico. aguilera@ugto.mx.
  • González-Palacios MA; Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8 km, Palo Blanco, Salamanca, Guanajuato 36885, Mexico. maxg@ugto.mx.
  • Raskin JP; Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium. jean-pierre.raskin@uclouvain.be.
  • Herrera-May AL; Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico. leherrera@uv.mx.
Sensors (Basel) ; 18(10)2018 Oct 19.
Article em En | MEDLINE | ID: mdl-30347743
New mobile devices need microphones with a small size, low noise level, reduced cost and high stability respect to variations of temperature and humidity. These characteristics can be obtained using Microelectromechanical Systems (MEMS) microphones, which are substituting for conventional electret condenser microphones (ECM). We present the design and modeling of a capacitive dual-backplate MEMS microphone with a novel circular diaphragm (600 µm diameter and 2.25 µm thickness) supported by fifteen polysilicon springs (2.25 µm thickness). These springs increase the effective area (86.85% of the total area), the linearity and sensitivity of the diaphragm. This design is based on the SUMMiT V fabrication process from Sandia National Laboratories. A lumped element model is obtained to predict the electrical and mechanical behavior of the microphone as a function of the diaphragm dimensions. In addition, models of the finite element method (FEM) are implemented to estimate the resonance frequencies, deflections, and stresses of the diaphragm. The results of the analytical models agree well with those of the FEM models. Applying a bias voltage of 3 V, the designed microphone has a bandwidth from 31 Hz to 27 kHz with 3 dB sensitivity variation, a sensitivity of 34.4 mV/Pa, a pull-in voltage of 6.17 V and a signal to noise ratio of 62 dBA. The results of the proposed microphone performance are suitable for mobile device applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: México País de publicação: Suíça