Your browser doesn't support javascript.
loading
Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts.
Polloni, André Eliezer; Chiaradia, Viviane; Figura, Eduardo Moresco; De Paoli, João Pedro; de Oliveira, Débora; de Oliveira, J Vladimir; de Araujo, Pedro Henrique Hermes; Sayer, Claudia.
Afiliação
  • Polloni AE; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • Chiaradia V; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • Figura EM; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • De Paoli JP; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • de Oliveira D; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • de Oliveira JV; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • de Araujo PHH; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil.
  • Sayer C; Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), P.O. Box 476, Florianopolis, SC, 88040-900, Brazil. claudia.sayer@ufsc.br.
Appl Biochem Biotechnol ; 184(2): 659-672, 2018 Feb.
Article em En | MEDLINE | ID: mdl-28836123
The demand for environmentally friendly products allied with the depletion of natural resources has increased the search for sustainable materials in chemical and pharmaceutical industries. Polyesters are among the most widely used biodegradable polymers in biomedical applications. In this work, aliphatic polyesters (from globalide and ω-pentadecalactone) were synthesized using a new commercial biocatalyst, the low-cost immobilized NS 88011 lipase (lipase B from Candida antarctica immobilized on a hydrophobic support). Results were compared with those obtained under the same conditions using a traditional, but more expensive, commercial biocatalyst, Novozym 435 (lipase B from C. antarctica immobilized on Lewatit VP OC). When NS 88011 was used in the polymerization of globalide, longer reaction times (240 min)-when compared to Novozym 435-were required to obtain high yields (80-90 wt%). However, higher molecular weights were achieved. When poly(ω-pentadecalactone) was synthesized, high yields and molecular weights (130,000 g mol-1) were obtained and the enzyme concentration showed strong influence on the polyester properties. This is the first report describing NS 88011 in polymer synthesis. The use of this cheaper enzymatic preparation can provide an alternative for polyester synthesis via enzymatic ring-opening polymerization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Proteínas Fúngicas / Enzimas Imobilizadas / Lipase Idioma: En Revista: Appl Biochem Biotechnol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Proteínas Fúngicas / Enzimas Imobilizadas / Lipase Idioma: En Revista: Appl Biochem Biotechnol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos