Your browser doesn't support javascript.
loading
A synthetic multi-cellular network of coupled self-sustained oscillators.
Fernández-Niño, Miguel; Giraldo, Daniel; Gomez-Porras, Judith Lucia; Dreyer, Ingo; González Barrios, Andrés Fernando; Arevalo-Ferro, Catalina.
Afiliação
  • Fernández-Niño M; Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
  • Giraldo D; Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá DC, Colombia.
  • Gomez-Porras JL; Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile.
  • Dreyer I; Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile.
  • González Barrios AF; Heisenberg-Gruppe BPMPB, Universität Potsdam, Potsdam, Germany.
  • Arevalo-Ferro C; Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá DC, Colombia.
PLoS One ; 12(6): e0180155, 2017.
Article em En | MEDLINE | ID: mdl-28662174
Engineering artificial networks from modular components is a major challenge in synthetic biology. In the past years, single units, such as switches and oscillators, were successfully constructed and implemented. The effective integration of these parts into functional artificial self-regulated networks is currently on the verge of breakthrough. Here, we describe the design of a modular higher-order synthetic genetic network assembled from two independent self-sustained synthetic units: repressilators coupled via a modified quorum-sensing circuit. The isolated communication circuit and the network of coupled oscillators were analysed in mathematical modelling and experimental approaches. We monitored clustering of cells in groups of various sizes. Within each cluster of cells, cells oscillate synchronously, whereas the theoretical modelling predicts complete synchronization of the whole cellular population to be obtained approximately after 30 days. Our data suggest that self-regulated synchronization in biological systems can occur through an intermediate, long term clustering phase. The proposed artificial multicellular network provides a system framework for exploring how a given network generates a specific behaviour.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos