Your browser doesn't support javascript.
loading
DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of Bacillus thuringiensis.
Pinzon, Efrain H; Sierra, Daniel A; Suarez, Miguel O; Orduz, Sergio; Florez, Alvaro M.
Afiliação
  • Pinzon EH; Laboratory of Biotechnology and Molecular Biology, MASIRA Institute, School of Health, University of Santander, UDES, Bucaramanga, Colombia.
  • Sierra DA; School of Electrical, Electronics and Telecommunications Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia.
  • Suarez MO; School of Electrical, Electronics and Telecommunications Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia.
  • Orduz S; Laboratory of Biotechnology and Molecular Biology, MASIRA Institute, School of Health, University of Santander, UDES, Bucaramanga, Colombia.
  • Florez AM; School of Biociencies, Faculty of Science, National University of Colombia, Medellin campus, Medellin, Colombia.
BMC Biophys ; 10: 4, 2017.
Article em En | MEDLINE | ID: mdl-28540040
BACKGROUND: The Cry toxins, or δ-endotoxins, are a diverse group of proteins produced by Bacillus thuringiensis. While DNA secondary structures are biologically relevant, it is unknown if such structures are formed in regions encoding conserved domains of Cry toxins under shuffling conditions. We analyzed 5 holotypes that encode Cry toxins and that grouped into 4 clusters according to their phylogenetic closeness. The mean number of DNA secondary structures that formed and the mean Gibbs free energy [Formula: see text] were determined by an in silico analysis using different experimental DNA shuffling scenarios. In terms of spontaneity, shuffling efficiency was directly proportional to the formation of secondary structures but inversely proportional to ∆G. RESULTS: The results showed a shared thermodynamic pattern for each cluster and relationships among sequences that are phylogenetically close at the protein level. The regions of the cry11Aa, Ba and Bb genes that encode domain I showed more spontaneity and thus a greater tendency to form secondary structures (<∆G). In the region of domain III; this tendency was lower (>∆G) in the cry11Ba and Bb genes. Proteins that are phylogenetically closer to Cry11Ba and Cry11Bb, such as Cry2Aa and Cry18Aa, maintained the same thermodynamic pattern. More distant proteins, such as Cry1Aa, Cry1Ab, Cry30Aa and Cry30Ca, featured different thermodynamic patterns in their DNA. CONCLUSION: These results suggest the presence of thermodynamic variations associated to the formation of secondary structures and an evolutionary relationship with regions that encode highly conserved domains in Cry proteins. The findings of this study may have a role in the in silico design of cry gene assembly by DNA shuffling techniques.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Biophys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Biophys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido