Your browser doesn't support javascript.
loading
Characterization of microtubule buckling in living cells.
Pallavicini, Carla; Monastra, Alejandro; Bardeci, Nicolás González; Wetzler, Diana; Levi, Valeria; Bruno, Luciana.
Afiliação
  • Pallavicini C; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
  • Monastra A; Instituto de Ciencias, Universidad Nacional de General Sarmiento, JM Gutiérrez 1150, Los Polvorines, 1613, Buenos Aires, Argentina.
  • Bardeci NG; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  • Wetzler D; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
  • Levi V; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  • Bruno L; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
Eur Biophys J ; 46(6): 581-594, 2017 Sep.
Article em En | MEDLINE | ID: mdl-28424847
Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3-2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Mecânicos / Microtúbulos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Eur Biophys J Assunto da revista: BIOFISICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Argentina País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Mecânicos / Microtúbulos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Eur Biophys J Assunto da revista: BIOFISICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Argentina País de publicação: Alemanha