Your browser doesn't support javascript.
loading
Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains.
Dos Santos, Leandro Vieira; Carazzolle, Marcelo Falsarella; Nagamatsu, Sheila Tiemi; Sampaio, Nádia Maria Vieira; Almeida, Ludimila Dias; Pirolla, Renan Augusto Siqueira; Borelli, Guilherme; Corrêa, Thamy Lívia Ribeiro; Argueso, Juan Lucas; Pereira, Gonçalo Amarante Guimarães.
Afiliação
  • Dos Santos LV; Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, UNICAMP, Campinas, São Paulo 13083-970, Brazil.
  • Carazzolle MF; GranBio/BioCelere, Campinas, Brazil.
  • Nagamatsu ST; Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, UNICAMP, Campinas, São Paulo 13083-970, Brazil.
  • Sampaio NM; Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, UNICAMP, Campinas, São Paulo 13083-970, Brazil.
  • Almeida LD; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins-CO, 80523-1618, USA.
  • Pirolla RA; GranBio/BioCelere, Campinas, Brazil.
  • Borelli G; GranBio/BioCelere, Campinas, Brazil.
  • Corrêa TL; Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, UNICAMP, Campinas, São Paulo 13083-970, Brazil.
  • Argueso JL; Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, UNICAMP, Campinas, São Paulo 13083-970, Brazil.
  • Pereira GA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins-CO, 80523-1618, USA.
Sci Rep ; 6: 38676, 2016 12 21.
Article em En | MEDLINE | ID: mdl-28000736
The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Xilose / Engenharia Genética Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Xilose / Engenharia Genética Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido