Your browser doesn't support javascript.
loading
A molecular dynamics study of the BACE1 conformational change from Apo to closed form induced by hydroxyethylamine derived compounds.
Gueto-Tettay, Carlos; Zuchniarz, Joshua; Fortich-Seca, Yeyson; Gueto-Tettay, Luis Roberto; Drosos-Ramirez, Juan Carlos.
Afiliação
  • Gueto-Tettay C; Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia.
  • Zuchniarz J; Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia.
  • Fortich-Seca Y; Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia.
  • Gueto-Tettay LR; Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia.
  • Drosos-Ramirez JC; Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia. Electronic address: jdrososr@unicartagena.edu.co.
J Mol Graph Model ; 70: 181-195, 2016 11.
Article em En | MEDLINE | ID: mdl-27750187
BACE1 is an aspartyl protease which is a therapeutic target for Alzheimer's disease (AD) because of its participation in the rate-limiting step in the production of Aß-peptide, the accumulation of which produces senile plaques and, in turn, the neurodegenerative effects associated with AD. The active site of this protease is composed in part by two aspartic residues (Asp93 and Asp289). Additionally, the catalytic site has been found to be covered by an antiparallel hairpin loop called the flap. The dynamics of this flap are fundamental to the catalytic function of the enzyme. When BACE1 is inactive (Apo), the flap adopts an open conformation, allowing a substrate or inhibitor to access the active site. Subsequent interaction with the ligand induces flap closure and the stabilization of the macromolecular complex. Further, the protonation state of the aspartic dyad is affected by the chemical nature of the species entering the active site, so that appropriate selection of protonation states for the ligand and the catalytic residues will permit the elucidation of the inhibitory pathway for BACE1. In the present study, comparative analysis of different combinations of protonation states for the BACE1-hydroxyethylamine (HEA) system is reported. HEAs are potent inhibitors of BACE1 with favorable pharmacological and kinetic properties, as well as oral bioavailability. The results of Molecular Dynamics (MD) simulations and population density calculations using 8 different parameters demonstrate that the LnAsp289 configuration (HEA with a neutral amine and the Asp289 residue protonated) is the only one which permits the expected conformational change in BACE1, from apo to closed form, after flap closure. Additionally, differences in their capacities to establish and maintain interactions with residues such as Asp93, Gly95, Thr133, Asp289, Gly291, and Asn294 during this step allow differentiation among the inhibitory activities of the HEAs. The results and methodology here reported will serve to elucidate the inhibitory pathway of other families of compounds that act as BACE1 inhibitors, as well as the design of better leader compounds for the treatment of AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Etilaminas / Secretases da Proteína Precursora do Amiloide / Simulação de Dinâmica Molecular Idioma: En Revista: J Mol Graph Model Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Etilaminas / Secretases da Proteína Precursora do Amiloide / Simulação de Dinâmica Molecular Idioma: En Revista: J Mol Graph Model Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos